Skip to main content
Log in

Ciprofloxacin Resistance in Domestic Wastewater Treatment Plants

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of domestic wastewater treatment plants to contribute for the dissemination of ciprofloxacin-resistant bacteria was assessed. Differences on bacterial counts and percentage of resistance in the raw wastewater could not be explained on basis of the size of the plant or demographic characteristics of population served. In contrast, the treated effluent of the larger plants had significantly more heterotrophs and enterobacteria, including ciprofloxacin-resistant organisms, than the smaller (p < 0.01). Moreover, longer hydraulic retention times were associated with significantly higher percentages of resistant enterobacteria in the treated effluent (p < 0.05). Independently of the size or type of treatment used, domestic wastewater treatment plants discharged per day at least 1010–1014 colony forming units of ciprofloxacin-resistant bacteria into the receiving environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso, A., Sánchez, P., & Martínez, J. L. (2001). Environmental selection of antibiotic resistance genes. Environmental Microbiology, 3, 1–9.

    Article  CAS  Google Scholar 

  • Baquero, F., Martínez, J. L., & Canto, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265.

    Article  CAS  Google Scholar 

  • Batt, A. L., Kim, S., & Aga, D. S. (2007). Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 68, 428–435.

    Article  CAS  Google Scholar 

  • Costa, P. M., Vaz-Pires, P., & Bernardo, F. (2006). Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants. Water Research, 40, 1735–1740.

    Article  Google Scholar 

  • D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, D. G. (2006). Sampling the antibiotic resistome. Science, 311, 374–377.

    Article  Google Scholar 

  • D’Costa, V. M., Griffiths, E., & Wright, G. D. (2007). Expanding the soil antibiotic resistome: Exploring environmental diversity. Current Opinion in Microbiology, 10, 481–489.

    Article  Google Scholar 

  • Faria, C., Vaz-Moreira, I., Serapicos, E., Nunes, O. C., & Manaia, C. M. (2009). Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Science of the Total Environment, 407, 3876–3882.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, M., Tiago, I., Veríssimo, A., Boaventura, A. R., Nunes, O. C., & Manaia, C. M. (2006). Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiology, Ecology, 55, 322–329.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, M., Vaz-Moreira, I., Gonzalez-Pajuelo, M., Nunes, O. C., & Manaia, C. M. (2007). Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiology, Ecology, 60, 166–176.

    Article  CAS  Google Scholar 

  • Gros, M., Petrović, M., & Barceló, D. (2009). Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Analytical Chemistry, 81, 898–912.

    Article  CAS  Google Scholar 

  • Guardabassi, L., Lo Fo Wong, D. M., & Dalsgaard, A. (2002). The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Research, 8, 1955–1964.

    Article  Google Scholar 

  • Kelly, B. G., Vespermann, A., & Bolton, D. J. (2009). Gene transfer events and their occurrence in selected environments. Food and Chemical Toxicology, 47, 978–983.

    Article  CAS  Google Scholar 

  • Kim, S., & Aga, D. S. (2007). Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. Journal of Toxicology and Environmental health. Part B, 10, 559–573.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2009a). Antibiotics in the aquatic environment—A review—Part II. Chemosphere, 75, 435–441.

    Article  Google Scholar 

  • Kümmerer, K. (2009b). Antibiotics in the aquatic environment—A review—Part I. Chemosphere, 75, 417–434.

    Article  Google Scholar 

  • Murray, G. E., Tobin, R. S., Junkins, B., & Kushner, D. J. (1984). Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Applied and Environmental Microbiology, 48, 73–77.

    CAS  Google Scholar 

  • Reinthaler, F. F., Posch, J., Feierl, G., Wust, G., Haas, D., Ruckenbauer, G., et al. (2003). Antibiotic resistance of E. coli in sewage and sludge. Water Research, 37, 1685–1690.

    Article  CAS  Google Scholar 

  • Sabate, M., Prats, G., Moreno, E., Balleste, E., Blanch, A. R., & Andreu, A. (2008). Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater. Research in Microbiology, 159, 288–293.

    Article  CAS  Google Scholar 

  • Sande-Bruinsma, N., Grundmann, H., Verloo, D., Tiemersma, E., Goossens, J. M., & Ferech, M. (2008). The European antimicrobial resistance surveillance system and European surveillance of antimicrobial consumption project groups. Antimicrobial drug use and resistance in Europe. Emerging Infectious Diseases, 14, 1722–1730.

    Article  Google Scholar 

  • Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. (2004). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology, Ecology, 43, 325–335.

    Article  Google Scholar 

  • Seifrtová, M., Pena, A., Lino, C. M., & Solich, P. (2008). Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Analytical Bioanalytical Chemistry, 391, 799–805.

    Article  Google Scholar 

  • Summers, A. O. (2006). Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Animal Biotechnology, 17, 125–135.

    Article  CAS  Google Scholar 

  • Tennstedt, T., Szczepanowski, R., Braun, S., Pühler, A., & Schlüter, A. (2003). Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiology, Ecology, 45, 239–252.

    Article  CAS  Google Scholar 

  • Tran, J. H., & Jacoby, G. A. (2002). Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Sciences of the United States of America, 99, 5638–5642.

    Article  CAS  Google Scholar 

  • Watkinson, A. J., Micalizzi, G. B., Graham, G. M., Bates, J. B., & Costanzo, S. D. (2007a). Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Applied Environmental Microbiology, 17, 5667–5670.

    Article  Google Scholar 

  • Watkinson, A. J., Micalizzi, G. B., Bates, J. B., & Costanzo, S. D. (2007b). Novel method for rapid assessment of antibiotic resistance in Escherichia coli isolates from environmental waters by use of a modified chromogenic agar. Applied Environmental Microbiology, 7, 2224–2229.

    Article  Google Scholar 

  • Zhang, Y., Marrs, C. F., Simon, C., & Xi, C. (2009). Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Science of the Total Environment, 407, 3702–3706.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the engineers of the WWTP for their support for samples collection and the COD and BOD5 analyses. This study was financed by Fundação para a Ciência e a Tecnologia (project PTDC/AMB/71236/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia M. Manaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manaia, C.M., Novo, A., Coelho, B. et al. Ciprofloxacin Resistance in Domestic Wastewater Treatment Plants. Water Air Soil Pollut 208, 335–343 (2010). https://doi.org/10.1007/s11270-009-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0171-0

Keywords

Navigation