Skip to main content

Pharmacogenetics and Pharmacogenomics in Cardiovascular Medicine and Surgery

  • Chapter
  • First Online:
Cardiovascular Genetics and Genomics

Abstract

Cardiovascular disease is a principal cause of global morbidity and mortality. Multiple drugs are used clinically to improve the population-level prognosis of cardiovascular conditions. However, there is a noticeable difference in the response of individual patients to a given drug, observed in both intermediate phenotypes (e.g. platelet function tests) and clinical outcomes. The aetiology underlying this drug response interindividual variation is multifactorial, incompletely understood, but is comprised from demographic, clinical, environmental and genetic factors. Pharmacogenomics aims to understand the genomic determinants of drug response, and to translate findings into clinical practice to reduce adverse drug reactions and/or improve drug effectiveness through genotype-informed dose and/or drug selection. Pharmacogenomic associations have been implemented for a few drugs after they have been licensed (e.g. abacavir in HIV disease), and there is a growing array of newly developed therapeutics that require a genomic companion diagnostic test, particularly in oncology. However, pharmacogenomics is yet to be adopted into widespread cardiovascular clinical practice. Several obstacles, including evidential, logistical, financial, and knowledge-based, have been identified. Nevertheless, substantive progress has been made, and early adopter sites are pioneering cardiovascular pharmacogenomics in practice. There is an undeniable large genomic influence affecting warfarin response, and strong evidence of pharmacogenomic associations with simvastatin myopathy, and stent thrombosis on clopidogrel. Variants that modulate responses to beta blockers, antiarrhythmics and angiotensin-converting enzyme inhibitors are also being identified. The integration of genomics into systems pharmacology approaches may further resolve interindividual drug response variability; the prospects are good, but the challenges are prodigious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation. The top 10 causes of death. 2014. http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 04 May 2016.

  2. Laslett LJ, Alagona P, Clark BA, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012;60(25_S):S1–S49.

    Article  PubMed  Google Scholar 

  3. QuintilesIMS. IMS health forecasts global drug spending to increase 30 percent by 2020, to $1.4 trillion, as medicine use gap narrows. 2015. http://www.imshealth.com/en/about-us/news/ims-health-forecasts-global-drug-spending-to-increase-30-percent-by-2020. Accessed 15 Feb 2017.

  4. statista. Global spending on medicines from 2010 to 2020 (in billion U.S. dollars). 2016. https://www.statista.com/statistics/280572/medicine-spending-worldwide/. Accessed 9 Nov 2016.

  5. Clinical Gene Networks. Market analysis. 2012. http://cgnetworks.se/page/market/. Accessed 9 Nov 2016.

  6. Spear BB, Heath-Chiozzi M, Huff J. Clinical application of pharmacogenetics. Trends Mol Med. 2001;7(5):201–4.

    Article  CAS  PubMed  Google Scholar 

  7. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M. Adverse drug reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS One. 2009;4(2):e4439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. World Health Organisation. WHO technical report no. 498. International drug monitoring: the role of national centres. 1972. http://www.who-umc.org/graphics/24756.pdf. Accessed 9 Nov 2016.

  10. Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. 2016. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 9 Nov 2016.

  11. Martin MA, Kroetz DL. Abacavir pharmacogenetics—from initial reports to standard of care. Pharmacotherapy. 2013;33(7):765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner RM, Pirmohamed M. Cardiovascular pharmacogenomics: expectations and practical benefits. Clin Pharmacol Ther. 2014;95(3):281–93.

    Article  CAS  PubMed  Google Scholar 

  13. van der Graaf PH, Benson N. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res. 2011;28(7):1460–4.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease—implications for personalized medicine. Pharmacol Rev. 2013;65(3):987–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dean L. Warfarin therapy and the genotypes CYP2C9 and VKORC1 2012 Mar 8 [Updated 2016 Jun 8]. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2016.

    Google Scholar 

  16. Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB. VKORC1 pharmacogenomics summary. Pharmacogenet Genomics. 2010;20(10):642–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirmohamed M, Kamali F, Daly AK, Wadelius M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol Sci. 2015;36(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  18. Jorgensen AL, Hughes DA, Hanson A, et al. Adherence and variability in warfarin dose requirements: assessment in a prospective cohort. Pharmacogenomics. 2013;14(2):151–63.

    Article  CAS  PubMed  Google Scholar 

  19. Bourgeois S, Jorgensen A, Zhang EJ, et al. A multi-factorial analysis of response to warfarin in a UK prospective cohort. Genome Med. 2016;8(1):2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83(3):460–70.

    Article  CAS  PubMed  Google Scholar 

  21. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marie I, Leprince P, Menard JF, Tharasse C, Levesque H. Risk factors of vitamin K antagonist overcoagulation. QJM. 2012;105(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  23. Jones M, McEwan P, Morgan CL, Peters JR, Goodfellow J, Currie CJ. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005;91(4):472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee MT, Klein TE. Pharmacogenetics of warfarin: challenges and opportunities. J Hum Genet. 2013;58(6):334–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Chen Y, Li X, et al. Influence of CYP2C9 and VKORC1 genotypes on the risk of hemorrhagic complications in warfarin-treated patients: a systematic review and meta-analysis. Int J Cardiol. 2013;168(4):4234–43.

    Article  PubMed  Google Scholar 

  26. Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14(13):1745–51.

    Article  CAS  PubMed  Google Scholar 

  27. Perera MA, Gamazon E, Cavallari LH, et al. The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans. Clin Pharmacol Ther. 2011;89(3):408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loebstein R, Dvoskin I, Halkin H, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood. 2007;109(6):2477–80.

    Article  CAS  PubMed  Google Scholar 

  29. Ciccacci C, Rufini S, Politi C, Novelli G, Forte V, Borgiani P. Could MicroRNA polymorphisms influence warfarin dosing? A pharmacogenetics study on mir133 genes. Thromb Res. 2015;136(2):367–70.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Andreu V, Teruel R, Corral J, et al. miR-133a regulates vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), a key protein in the vitamin K cycle. Mol Med. 2012;18:1466–72.

    Article  CAS  PubMed Central  Google Scholar 

  31. Johnson JA, Gong L, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7(8):e44064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersson ML, Eliasson E, Lindh JD. A clinically significant interaction between warfarin and simvastatin is unique to carriers of the CYP2C9*3 allele. Pharmacogenomics. 2012;13(7):757–62.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson JA, Cavallari LH. Warfarin pharmacogenetics. Trends Cardiovasc Med. 2015;25(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  35. Cavallari LH, Langaee TY, Momary KM, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87(4):459–64.

    Article  CAS  PubMed  Google Scholar 

  36. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics. 2009;10(8):1243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Jeong H, Takahashi H, et al. Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther. 2012;91(4):660–5.

    Article  CAS  PubMed  Google Scholar 

  38. Ramirez AH, Shi Y, Schildcrout JS, et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13(4):407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perera MA, Cavallari LH, Limdi NA, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet. 2013;382(9894):790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cha PC, Mushiroda T, Takahashi A, et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet. 2010;19(23):4735–44.

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi F, McGinnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5(3):e1000433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Borgiani P, Ciccacci C, Forte V, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics. 2009;10(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  43. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75(6):1337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bress A, Patel SR, Perera MA, Campbell RT, Kittles RA, Cavallari LH. Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics. 2012;13(16):1925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daneshjou R, Gamazon ER, Burkley B, et al. Genetic variant in folate homeostasis is associated with lower warfarin dose in African Americans. Blood. 2014;124(14):2298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voora D, Koboldt DC, King CR, et al. A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87(4):445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wajih N, Hutson SM, Wallin R. siRNA silencing of calumenin enhances functional factor IX production. Blood. 2006;108(12):3757–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wallin R, Hutson SM, Cain D, Sweatt A, Sane DC. A molecular mechanism for genetic warfarin resistance in the rat. FASEB J. 2001;15(13):2542–4.

    CAS  PubMed  Google Scholar 

  49. Glurich I, Berg RL, Burmester JK. Does CALU SNP rs1043550 contribute variability to therapeutic warfarin dosing requirements? Clin Med Res. 2013;11(2):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamali X, Wulasihan M, Yang YC, Lu WH, Liu ZQ, He PY. Association of GGCX gene polymorphism with warfarin dose in atrial fibrillation population in Xinjiang. Lipids Health Dis. 2013;12:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee KE, Chang BC, Park S, Gwak HS. Effects of single nucleotide polymorphisms in c-Myc on stable warfarin doses in patients with cardiac valve replacements. Pharmacogenomics. 2015;16(10):1101–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lee MT, Chen CH, Chou CH, et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics. 2009;10(12):1905–13.

    Article  CAS  PubMed  Google Scholar 

  53. Jeong E, Lee KE, Jeong H, Chang BC, Gwak HS. Impact of GATA4 variants on stable warfarin doses in patients with prosthetic heart valves. Pharmacogenomics J. 2015;15(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  54. Chung JE, Chang BC, Lee KE, Kim JH, Gwak HS. Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves. Eur J Clin Pharmacol. 2015;71(10):1229–36.

    Article  CAS  PubMed  Google Scholar 

  55. Wang LS, Shang JJ, Shi SY, et al. Influence of ORM1 polymorphisms on the maintenance stable warfarin dosage. Eur J Clin Pharmacol. 2013;69(5):1113–20.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng WT, Xu Q, Li CH. Influence of genetic polymorphisms in cytochrome P450 oxidoreductase on the variability in stable warfarin maintenance dose in Han Chinese. Eur J Clin Pharmacol. 2016;72(11):1327–34.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, Li L, Ding X, Kaminsky LS. Identification of cytochrome P450 oxidoreductase gene variants that are significantly associated with the interindividual variations in warfarin maintenance dose. Drug Metab Dispos. 2011;39(8):1433–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet. 2007;121(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  59. Eriksson N, Wallentin L, Berglund L, et al. Genetic determinants of warfarin maintenance dose and time in therapeutic treatment range: a RE-LY genomics substudy. Pharmacogenomics. 2016;17(13):1425–39.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang JE, Russomanno G, Wattanachai N, Alfirevic A, Pirmohamed M. Investigating the role of microRNA on warfarin response. Abstract at the British Pharmacological Society Annual Conference. London; 2015.

    Google Scholar 

  61. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.

    Article  CAS  PubMed  Google Scholar 

  62. Loffredo L, Perri L, Violi F. Impact of new oral anticoagulants on gastrointestinal bleeding in atrial fibrillation: a meta-analysis of interventional trials. Dig Liver Dis. 2015;47(5):429–31.

    Article  CAS  PubMed  Google Scholar 

  63. van der Hulle T, Kooiman J, den Exter PL, Dekkers OM, Klok FA, Huisman MV. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost. 2014;12(3):320–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pare G, Eriksson N, Lehr T, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404–12.

    Article  CAS  PubMed  Google Scholar 

  65. Dimatteo C, D’Andrea G, Vecchione G, et al. Pharmacogenetics of dabigatran etexilate interindividual variability. Thromb Res. 2016;144:1–5.

    Article  CAS  PubMed  Google Scholar 

  66. Laizure SC, Parker RB, Herring VL, Hu ZY. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis. Drug Metab Dispos. 2014;42(2):201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi J, Wang X, Nguyen JH, et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol. 2016;119:76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stangier J, Stähle H, Rathgen K, Roth W, Reseski K, Körnicke T. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, with coadministration of digoxin. J Clin Pharmacol. 2012;52(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  69. Liesenfeld KH, Lehr T, Dansirikul C, et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost. 2011;9(11):2168–75.

    Article  CAS  PubMed  Google Scholar 

  70. Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385(9984):2280–7.

    Article  CAS  PubMed  Google Scholar 

  71. Bristol-Myers Squibb Pharma Company. COUMADIN- warfarin sodium tablet) [package insert]. 2016. https://www.ncbi.nlm.nih.gov/books/NBK84174/. Accessed 31 Oct 2016.

  72. Shahabi P, Scheinfeldt LB, Lynch DE, et al. An expanded pharmacogenomics warfarin dosing table with utility in generalised dosing guidance. Thromb Haemost. 2016;116(2):337–48.

    Article  PubMed  Google Scholar 

  73. Lenzini P, Wadelius M, Kimmel S, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther. 2010;87(5):572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verhoef TI, Redekop WK, Daly AK, van RMF S, de Boer A, Maitland-van der Zee A-H. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol. 2014;77(4):626–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klein TE, Altman RB, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  CAS  PubMed  Google Scholar 

  76. Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pirmohamed M, Burnside G, Eriksson N, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.

    Article  CAS  PubMed  Google Scholar 

  78. Drozda K, Wong S, Patel SR, et al. Poor warfarin dose prediction with pharmacogenetic algorithms that exclude genotypes important for African Americans. Pharmacogenet Genomics. 2015;25(2):73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hernandez W, Gamazon ER, Aquino-Michaels K, et al. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. Pharmacogenomics J. 2014;14(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  80. American College of Cardiology. Genetically guided warfarin dosing lowers risk of some adverse events. 2017. https://www.sciencedaily.com/releases/2017/03/170320091104.htm. Accessed 19 Apr 2017.

  81. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14.

    Article  CAS  PubMed  Google Scholar 

  82. Verhoef TI, Redekop WK, Langenskiold S, et al. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden. Pharmacogenomics J. 2016;16(5):478–84.

    Article  CAS  PubMed  Google Scholar 

  83. Hijazi Z, Oldgren J, Lindback J, et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet. 2016;387(10035):2302–11.

    Article  CAS  PubMed  Google Scholar 

  84. Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532–61.

    Article  CAS  PubMed  Google Scholar 

  85. Rosenson RS. Statins: actions, side effects, and administration. 2016. https://www.uptodate.com/contents/statins-actions-side-effects-and-administration. Accessed 11 Nov 2016.

  86. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  CAS  Google Scholar 

  87. NICE Guidance. Cardiovascular disease: risk assessment and reduction, including lipid modification. 2014. https://www.nice.org.uk/guidance/cg181/chapter/1-recommendations?unlid=78112311720151126122213. Accessed 19 Oct 2016.

  88. NHS Choices. NICE publishes new draft guidelines on statins use. 2014. http://www.nhs.uk/news/2014/02February/Pages/NICE-publishes-new-draft-guidelines-on-statins-use.aspx. Accessed 19 Oct 2016.

  89. NICE. Wider use of statins could cut deaths from heart disease. 2014. https://www.nice.org.uk/news/article/wider-use-of-statins-could-cut-deaths-from-heart-disease. Accessed 19 Oct 2016.

  90. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moßhammer D, Schaeffeler E, Schwab M, Mörike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol. 2014;78(3):454–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Diomede L, Albani D, Sottocorno M, et al. In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products. Arterioscler Thromb Vasc Biol. 2001;21(8):1327–32.

    Article  CAS  PubMed  Google Scholar 

  93. Kwak BR, Mach F. Statins inhibit leukocyte recruitment: new evidence for their anti-inflammatory properties. Arterioscler Thromb Vasc Biol. 2001;21(8):1256–8.

    CAS  PubMed  Google Scholar 

  94. Almog Y. Statins, inflammation, and sepsis: hypothesis. Chest. 2003;124(2):740–3.

    Article  CAS  PubMed  Google Scholar 

  95. Tousoulis D, Antoniades C, Bosinakou E, et al. Effects of atorvastatin on reactive hyperemia and inflammatory process in patients with congestive heart failure. Atherosclerosis. 2005;178(2):359–63.

    Article  CAS  PubMed  Google Scholar 

  96. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. J Am Coll Cardiol. 1999;33(1):234–41.

    Article  CAS  PubMed  Google Scholar 

  97. Strey CH, Young JM, Molyneux SL, et al. Endothelium-ameliorating effects of statin therapy and coenzyme Q10 reductions in chronic heart failure. Atherosclerosis. 2005;179(1):201–6.

    Article  CAS  PubMed  Google Scholar 

  98. Raju SB, Varghese K, Madhu K. Management of statin intolerance. Indian J Endocrinol Metab. 2013;17(6):977–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Alfirevic A, Neely D, Armitage J, et al. Phenotype standardization for statin-induced myotoxicity. Clin Pharmacol Ther. 2014;96(4):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation. 2006;114(25):2788–97.

    Article  CAS  PubMed  Google Scholar 

  101. Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Expert Opin Drug Saf. 2011;10(3):373–87.

    Article  CAS  PubMed  Google Scholar 

  102. Godlee F. Statins BMJ. 2014;349. (http://www.w3.org/1999/xhtml”>Statins; The BMJ).

  103. Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med. 2001;2(5):205–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Parker BA, Capizzi JA, Grimaldi AS, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  105. Taylor BA, Lorson L, White CM, Thompson PD. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis. 2015;238(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  106. Nissen SE, Stroes E, Dent-Acosta RE, et al. Efficacy and tolerability of evolocumab vs. ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315(15):1580–90.

    Article  CAS  PubMed  Google Scholar 

  107. Ramsey LB, Johnson SG, Caudle KE, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McClure DL, Valuck RJ, Glanz M, Murphy JR, Hokanson JE. Statin and statin-fibrate use was significantly associated with increased myositis risk in a managed care population. J Clin Epidemiol. 2007;60(8):812–8.

    Article  PubMed  Google Scholar 

  109. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol. 2004;94(9):1140–6.

    Article  CAS  PubMed  Google Scholar 

  110. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther. 1996;60(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  111. Mazzu AL, Lasseter KC, Shamblen EC, Agarwal V, Lettieri J, Sundaresen P. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther. 2000;68(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  112. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–81.

    Article  CAS  PubMed  Google Scholar 

  113. Merck & Co I. Zocor (simvastatin) tablets - highlights of prescribing information. 2015. https://www.merck.com/product/usa/pi_circulars/z/zocor/zocor_pi.pdf. Accessed 7 July 2016.

  114. Merck & Co I. Mevacor (lovastatin) tablets description. 2014. https://www.merck.com/product/usa/pi_circulars/m/mevacor/mevacor_pi.pdf Accessed 7 July 2016.

  115. Pfizer Inc. LIPITOR- atorvastatin calcium trihydrate tablet, film coated. Highlights of prescribing information. 2015. http://labeling.pfizer.com/ShowLabeling.aspx?id=587. Accessed 7 July 2016.

  116. Ando H, Tsuruoka S, Yanagihara H, et al. Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin. Br J Clin Pharmacol. 2005;60(5):494–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fukazawa I, Uchida N, Uchida E, Yasuhara H. Effects of grapefruit juice on pharmacokinetics of atorvastatin and pravastatin in Japanese. Br J Clin Pharmacol. 2004;57(4):448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rogers JD, Zhao J, Liu L, et al. Grapefruit juice has minimal effects on plasma concentrations of lovastatin-derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Clin Pharmacol Ther. 1999;66(4):358–66.

    Article  CAS  PubMed  Google Scholar 

  119. Lilja JJ, Neuvonen M, Neuvonen PJ. Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br J Clin Pharmacol. 2004;58(1):56–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. AstraZeneca. Crestor (rosuvastatin calcium tablets) - highlights of prescribing information. 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf. Accessed 7 July 2016.

  121. Novartis. Lescol (fluvastatin dosium)—highlights of prescribing information. 2012. https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/Lescol.pdf. Accessed 7 July 2016.

  122. Kowa Pharmaceuticals. Livalo (pitavastatin) tablet - highlights of prescribing information. 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022363s008s009lbl.pdf . Accessed 7 July 2016.

  123. Bristol-Myers Squibb Company. Pravachol (pravastatin) tablets - highlights of prescribing information. 2013. http://packageinserts.bms.com/pi/pi_pravachol.pdf. Accessed 7 July 2016.

  124. Wiggins BS, Saseen JJ, Page RL 2nd, et al. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2016;134(21):e468–95.

    Article  PubMed  Google Scholar 

  125. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  126. Brunham LR, Lansberg PJ, Zhang L, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  127. Carr DF, O’Meara H, Jorgensen AL, et al. SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clin Pharmacol Ther. 2013;94(6):695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Donnelly LA, Doney AS, Tavendale R, et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin Pharmacol Ther. 2011;89(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  129. Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54(17):1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marciante KD, Durda JP, Heckbert SR, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011;21(5):280–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J. 2013;165(6):1008–14.

    Article  CAS  PubMed  Google Scholar 

  132. Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis. 2010;211(1):28–9.

    Article  CAS  PubMed  Google Scholar 

  133. de Keyser CE, Peters BJ, Becker ML, et al. The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. Pharmacogenet Genomics. 2014;24(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  134. Santos PC, Gagliardi AC, Miname MH, et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol. 2012;68(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  135. Hubacek JA, Dlouha D, Adamkova V, et al. SLCO1B1 polymorphism is not associated with risk of statin-induced myalgia/myopathy in a Czech population. Med Sci Monit. 2015;21:1454–9.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nies AT, Niemi M, Burk O, et al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 2013;5(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–33.

    Article  CAS  PubMed  Google Scholar 

  138. Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther. 2006;80(4):356–66.

    Article  CAS  PubMed  Google Scholar 

  139. Tornio A, Vakkilainen J, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of lovastatin acid. Pharmacogenet Genomics. 2015;25(8):382–7.

    Article  CAS  PubMed  Google Scholar 

  140. Ieiri I, Suwannakul S, Maeda K, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007;82(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  141. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–9.

    Article  CAS  PubMed  Google Scholar 

  142. Skottheim IB, Gedde-Dahl A, Hejazifar S, Hoel K, Asberg A. Statin induced myotoxicity: the lactone forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur J Pharm Sci. 2008;33(4–5):317–25.

    Article  CAS  PubMed  Google Scholar 

  143. Schirris TJ, Renkema GH, Ritschel T, et al. Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab. 2015;22(3):399–407.

    Article  CAS  PubMed  Google Scholar 

  144. Skottheim IB, Bogsrud MP, Hermann M, Retterstol K, Asberg A. Atorvastatin metabolite measurements as a diagnostic tool for statin-induced myopathy. Mol Diagn Ther. 2011;15(4):221–7.

    Article  CAS  PubMed  Google Scholar 

  145. Hermann M, Bogsrud MP, Molden E, et al. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several-fold in patients with atorvastatin-induced myopathy. Clin Pharmacol Ther. 2006;79(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  146. Generaux GT, Bonomo FM, Johnson M, Doan KM. Impact of SLCO1B1 (OATP1B1) and ABCG2 (BCRP) genetic polymorphisms and inhibition on LDL-C lowering and myopathy of statins. Xenobiotica. 2011;41(8):639–51.

    Article  CAS  PubMed  Google Scholar 

  147. He YJ, Zhang W, Chen Y, et al. Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clin Chim Acta. 2009;405(1–2):49–52.

    Article  CAS  PubMed  Google Scholar 

  148. Medicines and Healthcare products Regulatory Agency (MHRA). Simvastatin: updated advice on drug interactions. 2012. https://www.gov.uk/drug-safety-update/simvastatin-updated-advice-on-drug-interactions. Accessed 10 Nov 2016.

  149. Gallagher RM, Kirkham JJ, Mason JR, et al. Development and inter-rater reliability of the Liverpool adverse drug reaction causality assessment tool. PLoS One. 2011;6(12):e28096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Needham M, Fabian V, Knezevic W, Panegyres P, Zilko P, Mastaglia FL. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul Disord. 2007;17(2):194–200.

    Article  PubMed  Google Scholar 

  151. Grable-Esposito P, Katzberg HD, Greenberg SA, Srinivasan J, Katz J, Amato AA. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve. 2010;41(2):185–90.

    CAS  PubMed  Google Scholar 

  152. Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62(9):2757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A, Casciola-Rosen LA. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme a reductase (HMGCR) in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63(3):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med. 2016;374(7):664–9.

    Article  CAS  PubMed  Google Scholar 

  155. Limaye V, Bundell C, Hollingsworth P, et al. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve. 2015;52(2):196–203.

    Article  CAS  PubMed  Google Scholar 

  156. Mammen AL, Gaudet D, Brisson D, et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 2012;64(8):1233–7.

    CAS  Google Scholar 

  157. Elsby R, Hilgendorf C, Fenner K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012;92(5):584–98.

    Article  CAS  PubMed  Google Scholar 

  158. Kitzmiller JP, Luzum JA, Baldassarre D, Krauss RM, Medina MW. CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics. 2014;24(10):486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Klein K, Thomas M, Winter S, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012;91(6):1044–52.

    Article  CAS  PubMed  Google Scholar 

  160. Riedmaier S, Klein K, Hofmann U, et al. UDP-glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin Pharmacol Ther. 2010;87(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  161. Cho SK, Oh ES, Park K, Park MS, Chung JY. The UGT1A3*2 polymorphism affects atorvastatin lactonization and lipid-lowering effect in healthy volunteers. Pharmacogenet Genomics. 2012;22(8):598–605.

    Article  CAS  PubMed  Google Scholar 

  162. Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther. 2008;84(4):457–61.

    Article  CAS  PubMed  Google Scholar 

  163. Ferrari M, Guasti L, Maresca A, et al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol. 2014;70(5):539–47.

    Article  CAS  PubMed  Google Scholar 

  164. Fiegenbaum M, da Silveira FR, Van der Sand CR, et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther. 2005;78(5):551–8.

    Article  CAS  PubMed  Google Scholar 

  165. Hoenig MR, Walker PJ, Gurnsey C, Beadle K, Johnson L. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort. J Clin Lipidol. 2011;5(2):91–6.

    Article  PubMed  Google Scholar 

  166. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf. 2010;19(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  167. Vladutiu GD, Simmons Z, Isackson PJ, et al. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve. 2006;34(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  168. Hur J, Liu Z, Tong W, Laaksonen R, Bai JP. Drug-induced rhabdomyolysis: from systems pharmacology analysis to biochemical flux. Chem Res Toxicol. 2014;27(3):421–32.

    Article  CAS  PubMed  Google Scholar 

  169. Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat. 2006;27(10):977–89.

    Article  CAS  PubMed  Google Scholar 

  170. Vladutiu GD, Isackson PJ, Kaufman K, et al. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol Genet Metab. 2011;104(1–2):167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103(4):485–90.

    Article  CAS  PubMed  Google Scholar 

  172. Deichmann R, Lavie C, Andrews S. Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J. 2010;10(1):16–21.

    PubMed  PubMed Central  Google Scholar 

  173. Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. Biofactors. 2011;37(5):361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358(26):2849–50.

    Article  CAS  PubMed  Google Scholar 

  175. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Banach M, Serban C, Sahebkar A, et al. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  177. Verschuren JJ, Trompet S, Wessels JA, et al. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J. 2012;33(2):165–75.

    Article  PubMed  CAS  Google Scholar 

  178. Postmus I, Trompet S, Deshmukh HA, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66(9):616–23.

    Article  CAS  PubMed  Google Scholar 

  180. Deshmukh HA, Colhoun HM, Johnson T, et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J Lipid Res. 2012;53(5):1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet. 2009;2(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  182. Marcovina SM, Koschinsky ML, Albers JJ, Skarlatos S. Report of the national heart, lung, and blood institute workshop on lipoprotein(a) and cardiovascular disease: recent advances and future directions. Clin Chem. 2003;49(11):1785–96.

    Article  CAS  PubMed  Google Scholar 

  183. Lanktree MB, Anand SS, Yusuf S, Hegele RA. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ Cardiovasc Genet. 2010;3(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  184. Rose RH, Neuhoff S, Abduljalil K, Chetty M, Rostami-Hodjegan A, Jamei M. Application of a physiologically based pharmacokinetic model to predict OATP1B1-related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol. 2014;3:e124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kamal-Bahl SJ, Burke T, Watson D, Wentworth C. Discontinuation of lipid modifying drugs among commercially insured United States patients in recent clinical practice. Am J Cardiol. 2007;99(4):530–4.

    Article  PubMed  Google Scholar 

  187. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA. 2007;297(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  188. Wei MY, Ito MK, Cohen JD, Brinton EA, Jacobson TA. Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. J Clin Lipidol. 2013;7(5):472–83.

    Article  PubMed  Google Scholar 

  189. De Vera MA, Bhole V, Burns LC, Lacaille D. Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol. 2014;78(4):684–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Food and Drug Administration. FDA: limit use of 80 mg Simvastatin. 2011. http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm257884.htm. Accessed 28 Oct 2016.

  191. Collins GS, Altman DG. Predicting the adverse risk of statin treatment: an independent and external validation of Qstatin risk scores in the UK. Heart. 2012;98(14):1091–7.

    Article  CAS  PubMed  Google Scholar 

  192. Stewart A. SLCO1B1 polymorphisms and statin-induced myopathy. PLoS Curr. 2013;5. https://doi.org/10.1371/currents.eogt.d21e7f0c58463571bb0d9d3a19b82203 PMCI.

  193. Zhu HJ, Wang X, Gawronski BE, Brinda BJ, Angiolillo DJ, Markowitz JS. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther. 2013;344(3):665–72.

    Article  CAS  PubMed  Google Scholar 

  194. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358(9281):527–33.

    Article  CAS  PubMed  Google Scholar 

  195. Matetzky S, Shenkman B, Guetta V, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation. 2004;109(25):3171–5.

    Article  CAS  PubMed  Google Scholar 

  196. Garabedian T, Alam S. High residual platelet reactivity on clopidogrel: its significance and therapeutic challenges overcoming clopidogrel resistance. Cardiovasc Diagn Ther. 2013;3(1):23–37.

    PubMed  PubMed Central  Google Scholar 

  197. Spiliopoulos S, Pastromas G. Current status of high on-treatment platelet reactivity in patients with coronary or peripheral arterial disease: Mechanisms, evaluation and clinical implications. World J Cardiol. 2015;7(12):912–21.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Trenk D, Hochholzer W. Genetics of platelet inhibitor treatment. Br J Clin Pharmacol. 2014;77(4):642–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Aradi D, Storey RF, Komocsi A, et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. Eur Heart J. 2014;35(4):209–15.

    Article  PubMed  Google Scholar 

  200. Scott SA, Sangkuhl K, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. The Human Cytochrome P450 (CYP) Allele Nomenclature Committee. The Human Cytochrome P450 (CYP) Allele Nomenclature Database - CYP2C19 allele nomenclature. 2015. http://www.cypalleles.ki.se/cyp2c19.htm. Accessed 01 Nov 2016.

  202. Diaz-Villamarin X, Davila-Fajardo CL, Martinez-Gonzalez LJ, et al. Genetic polymorphisms influence on the response to clopidogrel in peripheral artery disease patients following percutaneous transluminal angioplasty. Pharmacogenomics. 2016;17(12):1327–38.

    Article  CAS  PubMed  Google Scholar 

  203. Guo B, Tan Q, Guo D, Shi Z, Zhang C, Guo W. Patients carrying CYP2C19 loss of function alleles have a reduced response to clopidogrel therapy and a greater risk of in-stent restenosis after endovascular treatment of lower extremity peripheral arterial disease. J Vasc Surg. 2014;60(4):993–1001.

    Article  PubMed  Google Scholar 

  204. McDonough CW, McClure LA, Mitchell BD, et al. CYP2C19 metabolizer status and clopidogrel efficacy in the Secondary Prevention of Small Subcortical Strokes (SPS3) study. J Am Heart Assoc. 2015;4(6):e001652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Sun W, Li Y, Li J, et al. Variant recurrent risk among stroke patients with different CYP2C19 phenotypes and treated with clopidogrel. Platelets. 2015;26(6):558–62.

    Article  CAS  PubMed  Google Scholar 

  206. Wang Y, Zhao X, Lin J, et al. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA. 2016;316(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  207. Hoh BL, Gong Y, McDonough CW, et al. CYP2C19 and CES1 polymorphisms and efficacy of clopidogrel and aspirin dual antiplatelet therapy in patients with symptomatic intracranial atherosclerotic disease. J Neurosurg. 2016;124(6):1746–51.

    Article  PubMed  Google Scholar 

  208. Osnabrugge RL, Head SJ, Zijlstra F, et al. A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel users. Genet Med. 2015;17(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  209. Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Cavallari LH, Duarte JD. Clopidogrel pharmacogenetics: from evidence to implementation. Futur Cardiol. 2016;12(5):511–4.

    Article  CAS  Google Scholar 

  211. Lewis JP, Horenstein RB, Ryan K, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics. 2013;23(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.

    Article  CAS  PubMed  Google Scholar 

  213. Stokanovic D, Nikolic VN, Konstantinovic SS, et al. P-glycoprotein polymorphism C3435T is associated with dose-adjusted clopidogrel and 2-Oxo-clopidogrel concentration. Pharmacology. 2016;97(3–4):101–6.

    CAS  PubMed  Google Scholar 

  214. Su J, Xu J, Li X, et al. ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis. PLoS One. 2012;7(10):e46366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yang Y, Lewis JP, Hulot J-S, Scott SA. The pharmacogenetic control of antiplatelet response: candidate genes and CYP2C19. Expert Opin Drug Metab Toxicol. 2015;11(10):1599–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ferri N, Corsini A, Bellosta S. Pharmacology of the new P2Y12 receptor inhibitors: insights on pharmacokinetic and pharmacodynamic properties. Drugs. 2013;73(15):1681–709.

    Article  CAS  PubMed  Google Scholar 

  217. Grosdidier C, Quilici J, Loosveld M, et al. Effect of CYP2C19*2 and *17 genetic variants on platelet response to clopidogrel and prasugrel maintenance dose and relation to bleeding complications. Am J Cardiol. 2013;111(7):985–90.

    Article  CAS  PubMed  Google Scholar 

  218. Mega JL, Close SL, Wiviott SD, et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation. 2009;119(19):2553–60.

    Article  CAS  PubMed  Google Scholar 

  219. Mega JL, Close SL, Wiviott SD, et al. Genetic variants in ABCB1, CYP2C19, and cardiovascular outcomes following treatment with clopidogrel and prasugrel. Lancet. 2010;376(9749):1312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mega JL, Close SL, Wiviott SD, et al. PON1 Q192R genetic variant and response to clopidogrel and prasugrel: pharmacokinetics, pharmacodynamics, and a meta-analysis of clinical outcomes. J Thromb Thrombolysis. 2016;41(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  221. Cuisset T, Loosveld M, Morange PE, et al. CYP2C19*2 and *17 alleles have a significant impact on platelet response and bleeding risk in patients treated with prasugrel after acute coronary syndrome. JACC Cardiovasc Interv. 2012;5(12):1280–7.

    Article  PubMed  Google Scholar 

  222. Teng R. Ticagrelor: Pharmacokinetic, Pharmacodynamic and Pharmacogenetic Profile: An Update. Clin Pharmacokinet. 2015;54(11):1125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Varenhorst C, Eriksson N, Johansson A, et al. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015;36(29):1901–12.

    Article  CAS  PubMed  Google Scholar 

  224. Wallentin L, James S, Storey RF, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet. 2010;376(9749):1320–8.

    Article  CAS  PubMed  Google Scholar 

  225. Sorich MJ, Vitry A, Ward MB, Horowitz JD, McKinnon RA. Prasugrel vs. clopidogrel for cytochrome P450 2C19-genotyped subgroups: integration of the TRITON-TIMI 38 trial data. J Thromb Haemost. 2010;8(8):1678–84.

    Article  CAS  PubMed  Google Scholar 

  226. Holmes DR Jr, Dehmer GJ, Kaul S, Leifer D, O'Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2010;56(4):321–41.

    Article  CAS  PubMed  Google Scholar 

  227. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–e122.

    Article  PubMed  Google Scholar 

  228. Mayo Clinic. Tailored antiplatelet therapy following PCI (TAILOR-PCI). 2012. https://clinicaltrials.gov/ct2/show/NCT01742117. Accessed 9 Nov 2016.

  229. Saab YB, Zeenny R, Ramadan WH. Optimizing clopidogrel dose response: a new clinical algorithm comprising CYP2C19 pharmacogenetics and drug interactions. Ther Clin Risk Manag. 2015;11:1421–7.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12(2):110–22.

    Article  CAS  PubMed  Google Scholar 

  231. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303(20):2043–50.

    Article  CAS  PubMed  Google Scholar 

  232. National Institute for Health and Care Excellence (NICE). Hypertension in adults: diagnosis and management. 2011. https://www.nice.org.uk/guidance/cg127/chapter/1-Guidance#choosing-antihypertensive-drug-treatment-2. Accessed 9 Nov 2016.

  233. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  234. Si D, Wang J, Xu Y, Chen X, Zhang M, Zhou H. Association of common polymorphisms in beta1-adrenergic receptor with antihypertensive response to carvedilol. J Cardiovasc Pharmacol. 2014;64(4):306–9.

    Article  CAS  PubMed  Google Scholar 

  235. Wu D, Li G, Deng M, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015;43(3):424–34.

    Article  CAS  PubMed  Google Scholar 

  236. Liu J, Liu ZQ, Yu BN, et al. beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  237. O’Shaughnessy MV, Fu B, Dickerson C, Thurston D, Brown MJ. The gain-of-function G389R variant of the β1-adrenoceptor does not influence blood pressure or heart rate response to β-blockade in hypertensive subjects. Clin Sci. 2000;99:233–8.

    Article  PubMed  Google Scholar 

  238. Pacanowski MA, Gong Y, Cooper-Dehoff RM, et al. beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension. Clin Pharmacol Ther. 2008;84(6):715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. O’Connor CM, Fiuzat M, Carson PE, et al. Combinatorial pharmacogenetic interactions of bucindolol and beta1, alpha2C adrenergic receptor polymorphisms. PLoS One. 2012;7(10):e44324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Johnson JA. Advancing management of hypertension through pharmacogenomics. Ann Med. 2012;44(0 1):S17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zhang F, Steinberg SF. S49G and R389G polymorphisms of the beta(1)-adrenergic receptor influence signaling via the cAMP-PKA and ERK pathways. Physiol Genomics. 2013;45(23):1186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Johnson AD, Newton-Cheh C, Chasman DI, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57(5):903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Vandell AG, Lobmeyer MT, Gawronski BE, et al. G protein receptor kinase 4 polymorphisms: beta-blocker pharmacogenetics and treatment-related outcomes in hypertension. Hypertension. 2012;60(4):957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bhatnagar V, O'Connor DT, Brophy VH, et al. G-protein-coupled receptor kinase 4 polymorphisms and blood pressure response to metoprolol among African Americans: sex-specificity and interactions. Am J Hypertens. 2009;22(3):332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Clin Pract Nephrol. 2006;2(11):637–50.

    Article  CAS  PubMed  Google Scholar 

  246. Muskalla AM, Suter PM, Saur M, Nowak A, Hersberger M, Krayenbuehl PA. G-protein receptor kinase 4 polymorphism and response to antihypertensive therapy. Clin Chem. 2014;60(12):1543–8.

    Article  CAS  PubMed  Google Scholar 

  247. Bijl MJ, Visser LE, van Schaik RH, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther. 2009;85(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  248. Ma MK, Woo MH, Mcleod HL. Genetic basis of drug metabolism. 2009. http://www.medscape.com/viewarticle/444804_5. Accessed 8 Nov 2016.

  249. Sharp CF, Gardiner SJ, Jensen BP, et al. CYP2D6 genotype and its relationship with metoprolol dose, concentrations and effect in patients with systolic heart failure. Pharmacogenomics J. 2009;9(3):175–84.

    Article  CAS  PubMed  Google Scholar 

  250. Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther. 2002;72(4):429–37.

    Article  CAS  PubMed  Google Scholar 

  251. Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536–44.

    Article  CAS  PubMed  Google Scholar 

  252. Novartis Pharmaceuticals Corporation. LOPRESSOR (metoprolol tartrate) tablet prescribing information. 2008. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/017963s062,018704s021lbl.pdf. Accessed 9 Nov 2016.

  253. Hiltunen TP, Donner KM, Sarin AP, et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J Am Heart Assoc. 2015;4(1):e001521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Price ET, Pacanowski MA, Martin MA, et al. LIVER X receptor alpha gene polymorphisms and variable cardiovascular outcomes in patients treated with antihypertensive therapy: results from the invest-genes study. Pharmacogenet Genomics. 2011;21(6):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. McDonough CW, Gong Y, Padmanabhan S, et al. Pharmacogenomic association of nonsynonymous SNPs in SIGLEC12, A1BG, and the selectin region and cardiovascular outcomes. Hypertension. 2013;62(1):48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Fontana V, Luizon MR, Sandrim VC. An update on the pharmacogenetics of treating hypertension. J Hum Hypertens. 2015;29(5):283–91.

    Article  CAS  PubMed  Google Scholar 

  257. Darbar D. The role of pharmacogenetics in atrial fibrillation therapeutics: is personalized therapy in sight? J Cardiovasc Pharmacol. 2016;67(1):9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33.

    Article  CAS  PubMed  Google Scholar 

  259. Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation. 2004;109(12):1509–13.

    Article  PubMed  Google Scholar 

  260. Parvez B, Vaglio J, Rowan S, et al. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. J Am Coll Cardiol. 2012;60(6):539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Parvez B, Shoemaker MB, Muhammad R, et al. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm. 2013;10(6):849–55.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Husser D, Adams V, Piorkowski C, Hindricks G, Bollmann A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2010;55(8):747–53.

    Article  CAS  PubMed  Google Scholar 

  263. Shoemaker MB, Muhammad R, Parvez B, et al. Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm. 2013;10(3):394–400.

    Article  Google Scholar 

  264. Aguirre LA, Alonso ME, Badía-Careaga C, et al. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol. 2015;13:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Mommersteeg MT, Brown NA, Prall OW, et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res. 2007;101(9):902–9.

    Article  CAS  PubMed  Google Scholar 

  266. Zhao C-M, Peng L-Y, Li L, et al. PITX2 loss-of-function mutation contributes to congenital endocardial cushion defect and Axenfeld-Rieger syndrome. PLoS One. 2015;10(4):e0124409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Sun YM, Wang J, Qiu XB, et al. PITX2 loss-of-function mutation contributes to tetralogy of Fallot. Gene. 2016;577(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  268. Roden DM. Predicting drug-induced QT prolongation and torsades de pointes. J Physiol. 2016;594(9):2459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  270. Behr ER, Roden D. Drug-induced arrhythmia: pharmacogenomic prescribing? Eur Heart J. 2013;34(2):89–95.

    Article  PubMed  Google Scholar 

  271. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96(9):2778–81.

    Article  CAS  PubMed  Google Scholar 

  272. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21(5):1029–34.

    Article  CAS  PubMed  Google Scholar 

  273. Kaab S, Crawford DC, Sinner MF, et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ Cardiovasc Genet. 2012;5(1):91–9.

    Article  PubMed  CAS  Google Scholar 

  274. Abbott GW. KCNE genetics and pharmacogenomics in cardiac arrhythmias: much ado about nothing? Expert Rev Clin Pharmacol. 2013;6(1):49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Arking DE, Pulit SL, Crotti L, et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014;46(8):826–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Jamshidi Y, Nolte IM, Dalageorgou C, et al. Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J Am Coll Cardiol. 2012;60(9):841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Behr ER, Ritchie MD, Tanaka T, et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLoS One. 2013;8(11):e78511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ramirez AH, Shaffer CM, Delaney JT, et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 2013;13(4):325–9.

    Article  CAS  PubMed  Google Scholar 

  279. Weeke P, Mosley JD, Hanna D, et al. Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome. J Am Coll Cardiol. 2014;63(14):1430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science (New York, NY). 2002;297(5585):1333–6.

    Article  CAS  Google Scholar 

  281. Tisdale JE, Jaynes HA, Kingery JR, et al. Effectiveness of a clinical decision support system for reducing the risk of QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2014;7(3):381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Sorita A, Bos JM, Morlan BW, Tarrell RF, Ackerman MJ, Caraballo PJ. Impact of clinical decision support preventing the use of QT-prolonging medications for patients at risk for torsade de pointes. J Am Med Inform Assoc. 2015;22(e1):e21–7.

    Article  PubMed  Google Scholar 

  283. Lee JK, Wu CK, Tsai CT, et al. Genetic variation-optimized treatment benefit of angiotensin-converting enzyme inhibitors in patients with stable coronary artery disease: a 12-year follow-up study. Pharmacogenet Genomics. 2013;23(4):181–9.

    Article  CAS  PubMed  Google Scholar 

  284. Brugts JJ, Isaacs A, Boersma E, et al. Genetic determinants of treatment benefit of the angiotensin-converting enzyme-inhibitor perindopril in patients with stable coronary artery disease. Eur Heart J. 2010;31(15):1854–64.

    Article  CAS  PubMed  Google Scholar 

  285. Oemrawsingh RM, Akkerhuis KM, Van Vark LC, et al. Individualized angiotensin-converting enzyme (ACE)-inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: The PERindopril GENEtic (PERGENE) risk model. J Am Heart Assoc. 2016;5(3):e002688.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Mahmoudpour SH, Leusink M, van der Putten L, et al. Pharmacogenetics of ACE inhibitor-induced angioedema and cough: a systematic review and meta-analysis. Pharmacogenomics. 2013;14(3):249–60.

    Article  CAS  PubMed  Google Scholar 

  287. Pare G, Kubo M, Byrd JB, et al. Genetic variants associated with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet Genomics. 2013;23(9):470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Do EJ, Lenzini P, Eby CS, et al. Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharmacogenomics J. 2012;12(5):417–24.

    Article  CAS  PubMed  Google Scholar 

  289. Dunnenberger HM, Crews KR, Hoffman JM, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106.

    Article  CAS  PubMed  Google Scholar 

  290. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5(2):233–8.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. ClinicalTrials.gov. Genetically targeted therapy for the prevention of symptomatic atrial fibrillation in patients with heart failure (GENETIC-AF). ARCA Biopharma, Inc. 2014. https://www.clinicaltrials.gov/ct2/show/study/NCT01970501?term=bucindolol&rank=1. Accessed 27 Jan 2015.

  294. Mitchell C, Gregersen N, Krause A. Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics. 2011;12(7):953–63.

    Article  CAS  PubMed  Google Scholar 

  295. Nagai R, Ohara M, Cavallari LH, et al. Factors influencing pharmacokinetics of warfarin in African-Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics. 2015;16(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  296. Mangravite LM, Engelhardt BE, Medina MW, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Li Y, Tang HL, Hu YF, Xie HG. The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost. 2012;10(2):199–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sir Munir Pirmohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turner, R.M., Pirmohamed, S.M. (2018). Pharmacogenetics and Pharmacogenomics in Cardiovascular Medicine and Surgery. In: Kumar, D., Elliott, P. (eds) Cardiovascular Genetics and Genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-66114-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66114-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66112-4

  • Online ISBN: 978-3-319-66114-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics