Skip to main content

Grain Subdivision and Its Effect on Texture Evolution in an Aluminum Alloy Under Plane Strain Compression

  • Chapter
Light Metals 2013

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Grain subdivision is widely observed in plastic deformation of aluminum alloys and of practical significance, but characterization of grain subdivision in a scale much larger than the grain size and how it affects texture evolution is still lacking. In this work, we performed channel die compression on an annealed AA1100 aluminum sheet along the normal direction (ND) at medium strains and room temperature. Micro structure and texture were characterized by electron backscatter diffraction (EBSD). The rotation axis and the misorientation angle for the deformation texture variants were calculated. The results show that grain subdivision proceeded in all the grains but in a heterogeneous manner. The <001>∥ND grains present high angle boundaries (HABs) of 15–30° without rotation axis clustering and almost no extra high angle boundaries (EHABs) of 30–60°; while the HABs and the EHABs coexisted in the <011>∥ND and the <112>∥ND grains. The rotation axes of the EHABs preferentially clustered at <011> and <111>. Under plain strain compression, multiple deformation texture variants created by grain subdivision interweaved with each other inside original grains, resulting in the EHABs with rotation axes clustering. In contrast, the HABs generated by grain subdivision via dislocation mechanism showed no rotation axes clustering. Grain subdivision leveraged in the texture component intensity and randomized orientations, resulted in fluctuation of the α-fiber texture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Q. Liu and N. Hansen, “Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation”, Scripta Metallurgica et Materialia, 32(1995) 1289–1295.

    Article  Google Scholar 

  2. Q. Liu, et al., “Heterogeneous microstructures and microtextures in cube oriented Al crystals after channel die compression”, Metallurgical and Materials Transactions A, 29(1998) 2333–2344.

    Article  Google Scholar 

  3. G. Winther, X. Huang and N. Hansen, “Crystallographic and macroscopic orientation of planar dislocation boundaries-Correlation with grain orientation”, Acta Materialia, 48(2000) 2187–2198.

    Article  Google Scholar 

  4. N. Hansen, X. Huang and G. Winther, “Effect of grain boundaries and grain orientation on structure and properties”, Metall Mater Trans A, 42(2011) 613–625.

    Article  Google Scholar 

  5. P. J. Hurley and FJ. Humphreys, “The application of EBSD to the study of substructural development in a cold rolled single-phase aluminum alloy”, Acta Materialia, 51(2003) 1087–1102.

    Article  Google Scholar 

  6. P.J. Hurley, P.S. Bate and F.J. Humphreys, “An objective study of substructural boundary alignment in aluminum”, Acta Materialia, 51(2003) 4737–4750.

    Article  Google Scholar 

  7. F.J. Humphreys et al., “Developing stable fine-grain micro structure s by large strain deformation”, Philosophical. Transactions of the Royal Society A, 357(1999) 1663–1681.

    Article  Google Scholar 

  8. M.F. Horstemeyer and D.L. McDowell, “Modeling effects of dislocation substructure in polycrystal elastoviscoplasticity”, Mechanics of Materials, 27(1998) 145–163.

    Article  Google Scholar 

  9. F.X. Lin, A. Godfrey and G. Winther, “Grain orientation dependence of extended planar dislocation boundaries in rolled aluminum”, Scripta Materialia, 61(2009) 237–240.

    Article  Google Scholar 

  10. G.M. Le et al., “Orientation dependence of the deformation microstructure in compressed aluminum”, Scripta Materialia, 66(2012) 359–362.

    Article  Google Scholar 

  11. G. Winther et al., “Critical comparison of dislocation boundary alignment studied by TEM and EBSD: technical issues and theoretical consequences”, Acta Materialia, 52(2004) 4437–4446.

    Article  Google Scholar 

  12. D.A. Hughes and N. Hansen, “High angle boundaries formed by grain subdivision mechanisms”, Acta Materialia, 45(1997) 3871–3886.

    Article  Google Scholar 

  13. PL. Sun, PW. Kao and C.P Chang, “High angle boundaries formation by grain subdivision in equal channel angular extrusion”, Scripta Materialia, 51(2004) 565–570.

    Article  Google Scholar 

  14. L. Delannay et al, “Quantitative analysis of grain subdivision in cold rolled aluminum”, Acta Materialia, 49(2001)2441–2451.

    Article  Google Scholar 

  15. S.G. Chowdhury, “Development of texture during cold rolling in AA5182 alloy”, Scripta Materialia, 52(2005) 99–105.

    Article  Google Scholar 

  16. R. Hielscher and H. Schaeben, “A novel pole figure inversion method: Specification of the MTEX algorithm”, Journal of Applied Crystallography 41(2008) 1024–1037.

    Article  Google Scholar 

  17. W. Mao, “Modeling of rolling texture in aluminum”, Materials Science and Engineering A, 257(1998) 171–177.

    Article  Google Scholar 

  18. D.A. Hughes et al., “Scaling of misorientation angle distributions”, Physical Review Letters, 81(1998) 4664–4667.

    Article  Google Scholar 

  19. D.A. Hughes et al., “Scaling of micro structural parameters: misorientations of deformation induced boundaries”, Acta Materialia, 45(1997) 105–112.

    Article  Google Scholar 

  20. I. Samajdar and R. Doherty, “Cube recrystallization texture in warm deformed aluminum: understanding and prediction”, Acta Materialia, 46(1998) 3145–3158.

    Article  Google Scholar 

  21. F. Basson and J.H. Driver, “Deformation banding mechanisms during plane strain compression of cube-oriented fee crystals”, Acta Materialia, 48(2000) 2101-.

    Article  Google Scholar 

  22. P. Mukhopadhyay and S. Badirujjaman, “Relative stability of cube orientation in single crystal aluminum during deformation”, Trans Indian Inst Met, 65(2012)343–353.

    Article  Google Scholar 

  23. D.A. Hughes and N. Hansen, “High angle boundaries and orientation distributions at large strains”, Scripta Metallurgica et Materiala, 33(1995)315–321.

    Article  Google Scholar 

  24. D. Raabe, Z. Zhao and W. Mao, “On the dependence of ingrain subdivision and deformation texture of aluminum on grain interaction”, Acta Materialia, 50(2002) 4379–4394.

    Article  Google Scholar 

  25. W.C. Liu and P.P. Zhai, “Characterization of microstructures near grain boundary in hot deformed AA3104 aluminum alloy”, Materials Characterization, 62(2011) 81–89.

    Article  Google Scholar 

  26. A. Albou, J.H. Driver and C. Maurice, “Microband evolution during large plastic strains of stable {110}<112> Al and Al-Mn crystals”, Acta Materialia, 58(2010) 3022–3034.

    Article  Google Scholar 

  27. A. Ray and B.J. Diak, “Grain interaction effect on the stability of the {110}<112> “brass” orientation in an aluminum multi-crystal”, Scripta Materialia, 62(2010) 606–609.

    Article  Google Scholar 

  28. J.H. Driver, J.H. Jensen and N. Hansen, “Large strain deformation structures in aluminum crystals with rolling texture orientations”, Acta Metallurgica et Materialia, 42(1994)3105–3114.

    Article  Google Scholar 

  29. A. Godfrey, J.H. Jensen and N. Hansen, “Slip pattern, micro structure an local crystallography in an aluminum single crystal of Copper orientation {112}<111>”, Acta Materialia, 46(1998) 835–848.

    Article  Google Scholar 

  30. P. Wagner, O. Engler and K. Lücke, “Formation of Cu-type shear bands and their influence on deformation and texture of rolled fee {112}<111> single crystals”, Acta Metallurgica et Materialia , 43(1995) 3799–3812.

    Article  Google Scholar 

  31. Q. Ma et al, “Rapid texture measurement of cold-rolled aluminum sheet by X-ray diffraction”, Scripta Materialia, 54(2006) 1901–1906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Barry A. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Ma, Q., Mao, W., Li, B., Wang, P.T., Horstemeyer, M.F. (2016). Grain Subdivision and Its Effect on Texture Evolution in an Aluminum Alloy Under Plane Strain Compression. In: Sadler, B.A. (eds) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-65136-1_61

Download citation

Publish with us

Policies and ethics