Skip to main content
Log in

Effect of Grain Boundaries and Grain Orientation on Structure and Properties

  • Symposium: Structural Transitions and Local Deformation Processes at and near Grain Boundaries
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of deformation microstructures in metals follows a universal pattern of grain subdivision. However, the structure in the grain boundary region may be different from that in the grain interior, although a characteristic region cannot be identified for polycrystals with medium to high stacking fault energy. In the grain interior, the dislocation structure is predominantly composed of almost planar boundaries (geometrically necessary boundaries) and cell boundaries (incidental dislocation boundaries) forming a cell block structure. For grains with grain sizes reaching down to about 4 μm deformed in tension and by rolling, a clear correlation has been established between the characteristics of the deformation structure and the orientation of the grain in which it evolves. A similar correlation is observed for single crystals of different orientations. Such correlations form the basis for a general analysis of active slip systems and for modeling of the flow stress and flow stress anisotropy of polycrystalline samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Sachs: Z. Ver. Deu. Ing., 1928, vol. 72, pp. 734–36.

    Google Scholar 

  2. G.J. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  3. J. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  4. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing Company, Malabar, FL, 1992, p. 839.

    Google Scholar 

  5. D. Kühlmann-Wilsdorf: Mater. Sci. Eng., 1989, vol. A113, pp. 1–41.

    Google Scholar 

  6. N. Hansen and D.A. Hughes: Phys. Status Solidi (b), 1995, vol. 149, pp. 155–72.

    Article  CAS  Google Scholar 

  7. N. Hansen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2917–35.

    Article  CAS  Google Scholar 

  8. A. Kochendörfer: Plastische Eigenschaften von Kristallen und Metallischen Werkstoffen, Springer Verlag, New York, NY, 1941, pp. 203–53.

    Google Scholar 

  9. J. Hauser and B. Chalmers: Acta Metall., 1961, vol. 9, pp. 808–18.

    Google Scholar 

  10. U. Kocks: Metall. Trans., 1970, vol. p. 1121.

  11. M. Ashby: Phil. Mag., 1970, p. 399.

  12. C. Barlow, B. Bay, and N. Hansen: Phil. Mag. A, 1985, vol. 51, pp. 253–75.

    CAS  Google Scholar 

  13. V. Randle, N. Hansen, and D. Juul-Jensen: Phil. Mag. A, 1996, vol. 73, pp. 265–82.

    Article  CAS  Google Scholar 

  14. C. Thorning, M. Somers, and J. Wert: Mater. Sci. Eng. A, 2005, vol. 397, pp. 215–28.

    Article  Google Scholar 

  15. L. Delannay, O.V. Mishin, D. Juul-Jensen, and P. Van Houtte: Acta Mater., 2001, vol. 49, pp. 2441–51.

    Article  CAS  Google Scholar 

  16. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  17. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  18. R. Barabash, G. Ice, W. Liu, and O. Barabash: Micron, 2009, vol. 40, pp. 28–36.

    Article  CAS  Google Scholar 

  19. D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen: Phys. Rev. Lett., 1998, vol. pp. 4664–67.

  20. D.A. Hughes and N. Hansen: Plastic Deformation Structures, Metallography and Microstructures, ASM INTERNATIONAL, Metals Park, OH, 2004, vol. 9, pp. 192–206.

  21. X. Huang and N. Hansen: Scripta Mater., 1997, vol. 37, pp. 1–7.

    Article  CAS  Google Scholar 

  22. X. Huang: Scripta Mater., 1998, vol. 38, pp. 1697–1703.

    Article  CAS  Google Scholar 

  23. Q. Liu, D. Juul-Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 5819–38.

    Article  CAS  Google Scholar 

  24. X. Huang, T. Leffers, and N. Hansen: Proc. 20th Risø Int. Symp. on Materials Science: Deformation-Induced Microstructures: Analysis and Relation to Properties, Risø, Denmark, 1999, pp. 365–74.

  25. G. Winther, X. Huang, and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2187–98.

    Article  CAS  Google Scholar 

  26. X. Huang, A. Borrego, and W. Pantleon: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 237–41.

    Google Scholar 

  27. X. Huang and N. Hansen: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 186–90.

    Google Scholar 

  28. X. Huang and G. Winther: Phil. Mag. A, 2007, vol. 87, pp. 5189–5214.

    Article  CAS  Google Scholar 

  29. Y. Wei, X. Huang, G. Winther, N. Hansen, W. Liu, Q. Liu, and A. Godfrey: Proc. 30th Risø Int. Symp. on Materials Science, Risø DTU, Roskilde, 2009, pp. 385–92.

  30. N. Hansen, X. Huang, and D.A. Hughes: Mater. Sci. Eng., 2001, vol. A317, pp. 3–11.

    CAS  Google Scholar 

  31. A.W. Thompson and W.A. Backofen: Metall. Trans., 1971, vol. 2, pp. 2004–06.

    Article  CAS  Google Scholar 

  32. D. Juul Jensen, A.W. Thompson, and N. Hansen: Metall. Trans. A, 1989, vol. 20A, pp. 2803–10.

    Google Scholar 

  33. G. Winther and X. Huang: Phil. Mag. A, 2007, vol. 87, pp. 5215–35.

    Article  CAS  Google Scholar 

  34. G. Winther: Acta Mater., 2003, vol. 51, pp. 417–29.

    Article  CAS  Google Scholar 

  35. Y. Kawasaki: J. Phys. Soc. Jpn., 1974, vol. 36, pp. 142–48.

    Article  CAS  Google Scholar 

  36. J.W. Steeds: Proc. R. Soc. A, 1966, vol. 292, pp. 343–73.

    Article  CAS  Google Scholar 

  37. Y. Kawasaki: Strength of Materials, The Japan Institute of Metals, Sendai, Japan, 1994, pp. 187–90.

  38. A. Godfrey, D. Juul-Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 823–33.

    Article  CAS  Google Scholar 

  39. M. Wróbel, S. Dymek, M. Blicharski, and S. Gorczyca: Text. Microstruct., 1988, vol. 10, pp. 9–19.

    Article  Google Scholar 

  40. Y. Nakayama and K. Morii: Trans. Jpn. Inst. Met., 1982, vol. 23, pp. 422–31.

    Google Scholar 

  41. J.H. Driver, D. Juul-Jensen, and N. Hansen: Acta Metall. Mater., 1994, vol. 42, pp. 3105–14.

    Article  CAS  Google Scholar 

  42. A. Godfrey, D. Juul-Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 835–48.

    Article  Google Scholar 

  43. Y. Kawasaki and T. Takeuchi: Scripta Metall., 1980, vol. 14, pp. 183–88.

    Article  CAS  Google Scholar 

  44. Q. Liu and N. Hansen: Proc. R. Soc. A, 1998, vol. 454, pp. 2555–91.

    Article  CAS  Google Scholar 

  45. F. Lin, A. Godfrey, and G. Winther: Scripta Mater., 2009, vol. 61, pp. 237–40.

    Article  CAS  Google Scholar 

  46. G. Winther, L. Margulies, S. Schmidt, and H.F. Poulsen: Acta Mater., 2004, vol. 52, pp. 2863–72.

    Article  CAS  Google Scholar 

  47. G. Winther: Acta Mater., 2008, vol. 56, pp. 1919–32.

    Article  CAS  Google Scholar 

  48. R. Armstrong, I. Codd, R. Douthwaite, and N. Petch: Phil. Mag., 1962, vol. 7, pp. 45–58.

    Article  CAS  Google Scholar 

  49. N. Hansen: Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    CAS  Google Scholar 

  50. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827–36.

    Article  CAS  Google Scholar 

  51. D. Juul-Jensen and N. Hansen: Acta Metall. Mater., 1990, vol. 38, pp. 1369–80.

    Article  Google Scholar 

  52. E.S. Eardley, F. Humphreys, S.A. Court, and P. Bate: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1085–90.

    Article  Google Scholar 

  53. N. Hansen and D. Juul-Jensen: Acta Metall. Mater., 1992, vol. 40, pp. 3265–75.

    Article  CAS  Google Scholar 

  54. A.D. Rollett, D. Juul-Jensen, and M.G. Stout: Proc. 13th Risø Symp., Risø National Laboratory, Roskilde, Denmark, 1992, pp. 93–109.

  55. G. Winther, D. Juul-Jensen, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 2455–65.

    Article  CAS  Google Scholar 

  56. G. Winther: Scripta Mater., 2005, vol. 52, pp. 995–1000.

    Article  CAS  Google Scholar 

  57. Z.J. Li, G. Winther, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 401–10.

    Article  CAS  Google Scholar 

  58. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Danish National Research Foundation and the National Natural Science Foundation of China (Grant No. 50911130230) for the Danish-Chinese Center for Nanometals, within which this work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang.

Additional information

Manuscript submitted December 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, N., Huang, X. & Winther, G. Effect of Grain Boundaries and Grain Orientation on Structure and Properties. Metall Mater Trans A 42, 613–625 (2011). https://doi.org/10.1007/s11661-010-0292-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0292-5

Keywords

Navigation