Skip to main content

Laser Based Standoff Techniques: A Review on Old and New Perspective for Chemical Detection and Identification

  • Chapter
  • First Online:
Cyber and Chemical, Biological, Radiological, Nuclear, Explosives Challenges

Part of the book series: Terrorism, Security, and Computation ((TESECO))

Abstract

The active remote sensing standoff detection is a very interesting methodology that could be used with the aim to reduce the risk for the health, in the case of intentional (terrorism or war) or accidental (natural or incident event) diffusion in the air of chemical agents. At the present day, there are several laser-based methodologies that could be applied for this aim but the future developments seem to be the integration of two methodologies. The integration of two methodologies could guarantee the development of a network of low-cost laser based systems for chemical detection integrated with a more sophisticated layout able to identify the nature of a release that could be used only in the case that the anomalies are detected. The requirements for standoff detection and identification are discussed in this paper, including the technologies and some examples for chemical traces detection and identification. The paper will include novel techniques and tools not tested yet in operative environments and the preliminary results will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallin, S., Pettersson, A., Ostmark, H., Hobro, A.: Laser Based Standoff Detection of Explosive: a Critical Review. Anal. Bioanal. Chem. 395, 259–274 (2009).

    Article  Google Scholar 

  2. FLIR System, http://www.flir.it

  3. Sasic, S., Ozaki, Y.: Raman, Infrared, and Near-Infrared Chemical Imaging. Wiley (2010).

    Google Scholar 

  4. Goyal, A.K., Myers, T.R.: Active Mid-Infrared Reflectometry and Hyper Spectral Imaging. Laser-Based Optical Detection of Explosives. CRC Press. 168–212(2015).

    Google Scholar 

  5. Deutsch, E.R., Kotidis, P., Zhu, N., Goyal, A.K., Ye, J., Mazurenko, A., Norman, M., Zafiriou, K., Baier, M., Connors, R.: Active and Passive infrared Spectroscopy for the Detection of Environmental Threats. Proc. SPIE. 9106, 91060A (2014).

    Article  Google Scholar 

  6. Thériault, J.M., Puckrin, E., Hancock, J., Lecavalier, P., Jackson Lepage, C., Jensen, J.O.: Passive Standoff Detection of Chemical Warfare Agents on Surfaces. Appl. Opt. 43, 5870–5885 (2004)

    Article  Google Scholar 

  7. Lewis, I.R., Daniel Jr., N.W., Chaffin, N.C., Griffiths, P.R., Tungol, M.W. Raman spectroscopic studies of explosive materials: towards a field able explosives detector, Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, p. 1985–2000 (1995).

    Article  Google Scholar 

  8. Parracino, S.,Richetta, M., Gelfusa, M., Malizia, A., Bellecci, C., De Leo, L., Perrimezzi, C., Fin, A., Forin, M., Giappicucci, F., Grion, M., Marchese, G., Gaudio, P.: Real-Time Vehicle Missions Monitoring Using a Compact LIDAR System and Conventional Instruments: First Results of an Experimental Campaign in a Suburban Area in Southern Italy. Opt. Eng. 55, 103107 (2016).

    Article  Google Scholar 

  9. Bellecci, C., Francucci, M., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., LoFeudo, T.: Application of a CO2 Dial System for Infrared Detection of Forest Fire and Reduction of False Alarm.Appl. Phys. B. 87, 373–378 (2007).

    Article  Google Scholar 

  10. Deutsch, E., Haibach, F., Mazurenko, A., Williams, B., Hulet, M., Miles, R., Goode, M.: Identification of CWAs Using Widely-Tunable Quantum Cascade Lasers. Proc. Chem. Biol. Defense Sci. Technol. Conf.(2011)

    Google Scholar 

  11. Goyal, A.K., Kotidis, P., Deutsch, E.R., Zhu, N., Norman, M., Ye, J., Zafiriou, K., Mazurenko, A.: Detection of chemical clouds using widely tunable quantum cascade lasers. Proc. SPIE. 9455, 94550L (2015).

    Article  Google Scholar 

  12. Spuler, S.M., Repasky, K.S., Morley, B., Moen, D., Hayman, M., Nehrir, A.R.: Field-Deployable diode Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor. Atmos. Meas. Tech. 8, 1073–1087 (2015).

    Google Scholar 

  13. Fiocco, G., Smullin, L.D.: Detection of Scattering Layers in the Upper Atmosphere (60–140km) by Optical Radar. Nature. 199, 1275–1276 (1963).

    Article  Google Scholar 

  14. Measures, R.M.: Laser Remote Sensing – Fundamentals and Applications. Wiley (1984).

    Google Scholar 

  15. Del Guasta, M.: Daily Cycles in Urban Aerosol Observed in Florence by Means of an Automatic 532–1064 nm LIDAR. Atm. Env. 36, 2853–2865 (2002).

    Article  Google Scholar 

  16. Mazzoleni, C., Kuhns, H.D., Moosmüller, H.: Monitoring Automotive Particulate Matter Emissions with LIDAR: A Review. Remote Sens. 2, 1077–1119 (2010)

    Article  Google Scholar 

  17. Likar, K., Eichinger, V.: Monitoring of the Particles Above the Unpaved Road by Lidar Technique. GLOBAL NEST J. 13, 309–316 (2011)

    Google Scholar 

  18. He, T.Y., Stanič, S., Gao, F., Bergant, K., Veberič, D., Song, X.Q., Dolžan, A.: Tracking of Urban Aerosols Using Combined LIDAR-Based Remote Sensing and Ground-Based Measurements. Atmos. Meas. Tech. 5, 891–900 (2012).

    Article  Google Scholar 

  19. Mei, L., Brydegaard, M.: Atmospheric Aerosol Monitoring by an Elastic Scheimpflug Lidar System. Opt. Exp. 23, A1613-A1628 (2015).

    Article  Google Scholar 

  20. Bösenberg, J.: EARLINET: A European Aerosol Research Lidar Network. In Proc. 20th International Laser Radar Conference (IPSL) (2000).

    Google Scholar 

  21. Cuomo, V., Di Girolamo, P., Esposito, F., Pappalardo, G., Serio, C., Spinelli, N., ... Bellecci, C.: The LITE Correlative Measurements Campaign in Southern Italy: Preliminary Results. Appl. Phys. B. 64, 553–559 (1997).

    Article  Google Scholar 

  22. Andreucci, F., Arbolino, M.V., Sozzi, R.: Lidar Utilisation for Industrial Stack Plume Automatic Tracking. Il Nuovo Cimento C. 14, 453–462(1991).

    Article  Google Scholar 

  23. Andreucci, F., Arbolino, M.V.: A study on forest fire automatic detection systems 1. Il Nuovo Cimento C. 16, 35–50, (1993).

    Article  Google Scholar 

  24. Andreucci, F., Arbolino, M.V.: A study on forest fire automatic detection systems 2. Il Nuovo Cimento C. 16, 51–65, (1993).

    Article  Google Scholar 

  25. Utkin, A.B., Lavrov, A.V., Costa, L., Simões, F., Vilar, R.: Detection of Small Forest Fires by Lidar. Appl. Phys. B. 74, 77–83 (2002).

    Google Scholar 

  26. Bellecci, C., De Leo, L., Gaudio, P., Gelfusa, M., Lo Feudo, T., Martellucci, S., Richetta, M.: Reduction of False Alarms in Forest Fire Surveillance Using Water Vapour Concentration Measurements. Opt. Laser Technol. 41, 374–379 (2009).

    Article  Google Scholar 

  27. Lavrov, A., Utkin, A.B., Vilar, R., Fernandez, A.: Application of Lidar in Ultraviolet, visible and Infrared Range for Early Forest Fire Detection. Appl. Phys. B. 76, 87–95 (2003)

    Article  Google Scholar 

  28. Weitkamp, C.: Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. Springer. (2005).

    Google Scholar 

  29. Kovalev, V., Eichenger, W.E.: Elastic Lidar, Theory, Practice and Analysis Methods. Wiley. (2004).

    Book  Google Scholar 

  30. Reichardt, J., Reichardt, S.: Determination of Cloud Effective Particle Size From the Multiple Scattering Effect on Lidar Integration-Method Temperature Measurements. Appl. Opt. 45, 2796–2804 (2006).

    Article  Google Scholar 

  31. Berkoff, T., Welton, E., Campbell, J., Valencia, S., Spinhirne, J., Tsay, S.C., Holben, B.: Observations of Aerosols Using the Micro-Pulse Lidar NETwork (MPLNET). Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 3, 2208–2211 (2004).

    Google Scholar 

  32. Uchino, O., Tokunaga, M., Maeda, M., Miyazoe, Y.: Differential-Absorption-Lidar Measurement of Tropospheric Ozone with Excimer-Raman Hybrid Laser. Opt. Lett. 8, 347–349 (1983).

    Article  Google Scholar 

  33. Vaughan, G., Wareing, D.P., Pepler, S.J., Thomas, L., Mitev, V.: Atmospheric Temperature Measurements Made by Rotational Raman Scattering. Appl. Opt. 32, 2758–2764 (1993)

    Article  Google Scholar 

  34. Mikkelsen, T., Mann, J., Courtney, M., Sjholm, M.: Wand scanner: 3-D Wind and Turbulence Measurements From Three Steerable Doppler Lidars. IOP Conf. Ser. Earth Environ. Sci. 1, 012018 (2008)

    Article  Google Scholar 

  35. McClung, F.J., Hellarth, R.W.: Giant Optical Pulsations From Ruby. J. Appl. Phys. 33, 828 (1962).

    Article  Google Scholar 

  36. Reichardt, J., Wandinger, U., Serwazi, M., Weitkamp, C.: Combined Raman Lidar for Aerosol, Ozone, and Moisture Measurements. Opt. Eng. 35, 1457–1465 (1996)

    Article  Google Scholar 

  37. Schafer, R.W.: What Is a Savitzky-Golay Filter? IEEE Signal Processing Magazine 28, 111–117 (2011).

    Article  Google Scholar 

  38. Sumnicht, G.K., McGee, T.J., Twigg, L., Gross, M., Beyerle, G.: Savitzky-Golay Filtering for Ozone Retrieval and Vertical Resolution Algorithm Optimization. J. Opt. Soc. Am. (1999).

    Google Scholar 

  39. Poreh, D., Fiorani, L.: Software for Analyzing and Visualizing Laser Remote Sensing (LIDAR) Data. J. Optoelectron. Adv. M. 12, 1231–1236 (2010).

    Google Scholar 

  40. Azadbakht, M., Fraser, C.S., Zhang, C., Leach, J.: A Signal Denoising Method for Full-Wave Form LIDAR Data. Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Antalya, Turkey, 11–13 (2013).

    Google Scholar 

  41. Iarlori, M., Madonna, F., Rizi, V., Trickl, T., Amodeo, A.: Effective Resolution Concepts for Lidar Observations. Atmos. Meas. Tech. 8, 5157–5176, (2015).

    Article  Google Scholar 

  42. Gaudio, P., Gelfusa, M., Richetta, M.: Preliminary Results of a Lidar-Dial Integrated System for the Automatic Detection of Atmospheric Pollutants. Proc. SPIE. 8534, 853404 (2012).

    Article  Google Scholar 

  43. Saleh, B.E.A., Teich, M.C.: Semiconductor Photodetectors. Fundamentals of Photonics. Wiley. (1991).

    Google Scholar 

  44. Enteper le Nuovetecnologiel‘Energia e l’Ambiente – ENEA, http://www.enea.it/

  45. Klett, J.D.: Stable Analytical Inversion Solution for Processing Lidar Returns. Appl. Opt. 20, 211–220 (1981).

    Article  Google Scholar 

  46. Ancellet, G., Papayannis, A., Pelon, J., Megie, G.: DIAL Tropospheric Measurement Using a Nd:YAG Laser and the Raman Shifting Technique.J. Atmos. Ocean. Tech.6, 832–839 (1989).

    Article  Google Scholar 

  47. Stefanutti, L., Castagnoli, F., Del Guasta, M., Morandi, M., Sacco, V.M., Zuccagnoli, L., Godin, S., Megie, G., Porteneuve, J.: The Antarctic Ozone LIDAR System. Appl. Phys. B. 55, 3–12 (1992).

    Google Scholar 

  48. Sunesson, J.A., Apituley, A., Swart, D.P.J.: Differential Absorption Lidar System for Routine Monitoring of Tropospheric Ozone. Appl. Opt.33, 7045–7058 (1994).

    Article  Google Scholar 

  49. Fiorani, L., Calpini, B., Jaquet, L., Van Den Bergh, H., Durieux, E.: A Combined Determination of Wind Velocities and Ozone Concentrations for a First Measurement of Ozone Fluxes with a DIAL Instrument During the MEDCAPHOT-TRACE Campaign. Atmos. Environ, 32, 2151–2159 (1998).

    Article  Google Scholar 

  50. Zanzottera, E.: Differential Absorption Lidar Techniques in the Determination of Trace Pollutants and Physical Parameters of the Atmosphere. Crit. Rev. Anal. Chem. 21, 279–319 (1990).

    Article  Google Scholar 

  51. Killinger D.K., Menyuk, N.: Remote Probing of the Atmosphere Using a CO2 Dial System. IEEE J. Quant. Electron. 17, (1981).

    Google Scholar 

  52. Menyuk, N., Killinger, D.K., DeFeo, W.E.: Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar. Appl. Opt. 21, 2275–2286 (1982).

    Article  Google Scholar 

  53. Amediek, A., Fix, A., Wirth, M., Ehret, G.: Development of an OPO System at 1.57 μm for Integrated Path DIAL Measurement of Atmospheric Carbon Dioxide. Appl. Phys. B. 92, 295–302 (2008).

    Google Scholar 

  54. Kempfer, U., Carnuth, W., Lotz, R., Trickl, T.: A Wide-Range Ultraviolet Lidar System for Tropospheric Ozone Measurements: Development and Application. Rev. Sci. Instrum. 65, 3145–3164 (1994).

    Article  Google Scholar 

  55. Reichardt, J., Wandinger, U., Serwazi, M., Weitkamp, C.: Combined Raman Lidar for Aerosol, Ozone, and Moisture Measurements. Opt. Eng. 35, 1457–1465 (1996).

    Article  Google Scholar 

  56. Moore, D.S., Scharff, R.J.: Portable Raman Explosives Detection. Anal. Bioanal. Chem. 393, 1571–1578 (2009).

    Article  Google Scholar 

  57. Wallin, S., Pettersson, A., Östmark, H., Hobro, A.: Laser-Based Standoff Detection of Explosives: a Critical Review. Anal. Bioanal. Chem. 395, 259–274 (2009).

    Article  Google Scholar 

  58. Deutsch, E. R., Kotidis, P., Zhu, N., Goyal, A. K., Ye, J., Mazurenko, A., ... Connors, R.: Active and Passive Infrared Spectroscopy for the Detection of Environmental Threats. SPIE. 91060A–91060A (2014).

    Google Scholar 

  59. Carlisle, C.B., Van Der Laan, J.E., Carr, L.W., Adam, P., Chiaroni, J.P.: CO2 Laser-Based Differential Absorption Lidar System for Range-Resolved and Long-Range Detection of Chemical Vapor Plumes. Appl. Opt. 34, 6187–6200 (1995).

    Article  Google Scholar 

  60. Carr, L.W., Fletcher, L., Crittenden, M., Carlisle, C.B., Gotoff, S.W., Reyes, F., D’Amico, F.M.: Frequency-Agile CO2 DIAL for Environmental Monitoring. SPIE. 282–294(1994).

    Google Scholar 

  61. Carr, L.W., Warren, R.E., Carlisle, C.B., Carlisle, S.A., Cooper, D.E., Fletcher, L., ... Reyes, F.: Multiple Volatile Organic Compound Vapor Chamber Testing with a Frequency-Agile CO2 DIAL System: Field-Test Results. P. Soc. Photo-Opt. Ins. 291–302 (1995).

    Google Scholar 

  62. Bellecci, C., Caputi G.E., De Donato F., Gaudio, P., Valentini M.: CO2 Dial for Monitoring Atmospheric Pollutants at University of Calabria. Il Nuovo Cimento C. 18, 463–472 (1995).

    Article  Google Scholar 

  63. Bellecci, C., Dalu, G.A., Aversa, P., Federico, S., Gaudio, P.: Evolution of Water Vapour Profile Sover Complex Terrain: Observation and Comparison with Model Simulation in the Valley of Cosenza. Proc. SPIE. 3865, 108–118 (1999).

    Article  Google Scholar 

  64. Bellecci, C., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., Ventura, P., Antonucci, A., Pasquino, F., Ricci, V., Sassolini, A.: Database for Chemical Weapons Detection: First Results. Proc. SPIE. 7116, (2008).

    Google Scholar 

  65. Gaudio, P., Malizia, A., Gelfusa, M., Martinelli, E., DiNatale, C., Poggi, L.A., Bellecci, C.: Mini-DIAL System Measurements Coupled with Multivariate Data Analysis to Identify TIC and TIM Simulants: Preliminary Absorption Data Base Analysis. J. Phys. Conf. 778, 012004 (2017).

    Article  Google Scholar 

  66. Frish, M.B., Wainner, R.T., Laderer, M.C., Green, B.D., Allen, M.G.: Standoff and Miniature Chemical Vapor Detectors Based on Tunable Diode Laser Absorption Spectroscopy. IEEE Sens. J. 10, 639–646 (2010).

    Article  Google Scholar 

  67. Gaudio, P., Malizia, A., Gelfusa, M., Murari, A., Parracino, S., Poggi, L.A., Lungaroni, M., Ciparisse, J.F., Di Giovanni, D., Cenciarelli, O., Carestia, M., Peluso, E., Gabbarini, V., Talebzadeh, S., Bellecci, C.: Lidar and Dial Application for Detection and Identification: A Proposal to Improve Safety and Security. J. Instrum. 12 (2017).

    Google Scholar 

  68. Xiang, C., Ma, X., Liang, A., Han, G., Gong, W., Yan, F.: Feasibility Study of Multi-Wave Length Differential Absorption LIDAR for CO2 Monitoring. Atmosphere, 7, 89 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The Author is very grateful to Dr. Stefano Parracino for the Figs. 1, 2, 3, 4, 7, and 8 provided by his PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqualino Gaudio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaudio, P. (2017). Laser Based Standoff Techniques: A Review on Old and New Perspective for Chemical Detection and Identification. In: Martellini, M., Malizia, A. (eds) Cyber and Chemical, Biological, Radiological, Nuclear, Explosives Challenges. Terrorism, Security, and Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-62108-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62108-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62107-4

  • Online ISBN: 978-3-319-62108-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics