Skip to main content

Advertisement

Log in

Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting.

The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus.

In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered.

A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fiocco, L.D. Smullin, Nature 199, 1275 (1963)

    Article  ADS  Google Scholar 

  2. R.M. Schotland, J. Appl. Meteorol. 13, 71 (1974)

    Article  Google Scholar 

  3. F. Andreucci, M. Arbolino, Nuovo Cim. 16, 51 (1993)

    Article  ADS  Google Scholar 

  4. A. Lavrov, R. Vilar, Application of lidar at 1.54 μm for forest fire detection. Remote sensing for earth science, ocean and sea ice applications, 3868, Bellingham, SPIE (1999), pp. 473–477

  5. S. Pershin, W.M. Hao, R.A. Susott, R.E. Babbitt, A. Riebau, Estimation of emission from Idaho biomass fire using compact eye-safe diode lidar. Application of lidar to current atmospheric topics III, 3757, Bellingham, SPIE (1999), pp. 60–6

  6. R. Vilar, A. Lavrov, Appl. Phys. B 71, 225 (2000)

    ADS  Google Scholar 

  7. A. Utkin, A. Fernandes, L. Costa, R. Vilar, F. Simoes, Appl. Phys. B 74, 77 (2002)

    Article  ADS  Google Scholar 

  8. A. Utkin, A. Fernandes, R. Vilar, A. Lavrov, Forest fire detection by means of lidar. Forest fire research and wildland safety, Proceedings of the IV International Conference on Forest Fire Research (Millpress, Rotterdam, 2002), p. 58

  9. A. Fernandes, A. Utkin, A. Lavrov, R. Vilar, Pattern Recognition 37, 2039 (2004)

  10. C. Bellecci, I. Bellucci, P. Gaudio, S. Martellucci, G. Petrocelli, M. Richetta, Rev. Sci. Instrum. 74, 1064 (2003)

    Article  ADS  Google Scholar 

  11. C. Bellecci, P. Gaudio, S. Martellucci, E. Penco, M. Richetta, Rev. Sci. Instrum. 76, 026115 (2005)

    Article  ADS  Google Scholar 

  12. R. Barbini, F. Colao, A. Petri, Nuovo Cim. D 13, 143 (1991)

    Google Scholar 

  13. P.G. Gobbi, G.C. Reali, Opt. Commun. 52, 195 (1984)

    Article  ADS  Google Scholar 

  14. C. Bellecci, F. De Donato, Appl. Opt. 38, 5212 (1999)

    Article  ADS  Google Scholar 

  15. P. Aversa, C. Bellecci, G. Benedetti Michelangeli, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, R. Zoccali, Proc. SPIE 3104, 154 (1997)

    Article  ADS  Google Scholar 

  16. F. Andreucci, M. Arbolino, Nuovo Cim. 16, 35 (1993)

    Article  MATH  ADS  Google Scholar 

  17. A.J. Johnson, Fuel and Combustion Handbook (McGraw-Hill, New York, 1951)

    Google Scholar 

  18. F.A. Gifford Jr., An outline of theories of diffusion in the lower layers of the atmosphere, Meteorology and Atomic Energy, ed. by D.H. Slade (U.S. Atomic Energy Commission, National Technical Information Service, U.S. Department of Commerce Springfield, 1996)

  19. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, New Rochelle, 1986)

    Google Scholar 

  20. A.W.M. van Schijndel, Building Environ. 38, 319 (2003)

    Article  Google Scholar 

  21. M.J. Spearpoint, J.G. Quintere, Combust. Flame 123, 308 (2000)

    Article  Google Scholar 

  22. F. Costa, D. Sandberg, Combust. Flame 139, 227 (2004)

    Article  Google Scholar 

  23. R.M. Measures, Laser Remote Sensing (Wiley, New York, 1984)

    Google Scholar 

  24. R. Barbini, F. Colao, L. Fiorani, A. Paolucci, Lidar atmosferico: aspetti legislativi, scientifici e tecnologici, ENEA, Centro Ricerche, Frascati, Roma

  25. N. Menyuk, D.K. Killinger, E. DeFeo, Appl. Opt. 21, 2275 (1982)

    ADS  Google Scholar 

  26. C. Bellecci, G. Caputi, F. De Donato, P. Gaudio, M. Valentini, Nuovo Cim. 18, 463 (1995)

    Article  ADS  Google Scholar 

  27. C. Bellecci, S. Martellucci, P. Aversa, G. Caputi, F. De Donato, P. Gaudio, M. Richetta, R. Zoccali, Romanian J. Optoelectron. 6, 23 (1998)

    Google Scholar 

  28. C. Bellecci, L. Casella, S. Federico, P. Gaudio, T. Lo Feudo, S. Martellucci, M. Richetta, P. Vetrò, Evolution study of a water vapor plume using a mobile CO2 dial system, EUROPTO European Symposium on Remote Sensing, Tolose, France, 17–21 September (2001), vol. 4539, pp. 180–190

  29. W.B. Grant, J.S. Margolis, A.M. Brothers, D.M. Tratt, Appl. Opt. 26, 3033 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gaudio.

Additional information

PACS

42.68.Wt; 89.60.Ec; 92.60.Mt; 92.60.Iq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellecci, C., Francucci, M., Gaudio, P. et al. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm. Appl. Phys. B 87, 373–378 (2007). https://doi.org/10.1007/s00340-007-2607-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2607-9

Keywords

Navigation