Skip to main content

Genetic Adaptations of Bacteria for Metabolism of Polycyclic Aromatic Hydrocarbons

  • Chapter
  • First Online:
Microbial Ecotoxicology

Abstract

Polycyclic aromatic compounds (PAH) are a family of chemicals containing two or more fused benzene rings, which present ecotoxicological concerns ranging from acute toxicity in aquatic organisms to carcinogenesis in mammals. In contrast, microbial ecotoxicology of PAH centers on metabolic activities that enable utilization of PAH as growth supporting substrates. This chapter focuses on PAH biodegradation by aerobic bacteria , and examines characteristics that are important in PAH metabolism at three levels: enzyme systems that mediate catabolism and carbon assimilation, regulatory circuitry that controls expression of catabolic enzymes and cell structures and physiological activities that affect PAH uptake. The goal is to present a holistic view of the organisms and their biology that is relevant to PAH biodegradation. Of these areas, catabolism is the most developed and key enzymes and mechanisms have been elucidated. However, comparatively little is known about the regulatory systems that control expression of these enzymes. Uptake from the environment is the single most important factor affecting PAH degradation and while cellular characteristics that affect uptake are known, the process is still largely a “black box” and mechanistic details are lacking, especially regarding molecules that may facilitate PAH access. Mechanisms of regulation and uptake remain areas in need of future research. Future work should also focus on moving beyond studies of individual organisms, and gaining an understanding of PAH biodegradation processes operating within microbial consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasnezhad H, Foght JM, Gray MR (2011) Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation 22(3):485–496

    Article  CAS  PubMed  Google Scholar 

  • Albaiges J (2013) Organic chemicals in the environment. In: Mechanisms of degradation and transformation, 2nd edn. Int J Environ Anal Chem 93(14):1563

    Google Scholar 

  • Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7(10):410–413

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego, CA

    Google Scholar 

  • Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:274

    Google Scholar 

  • Baboshin M, Ivashina T, Chernykh A, Golovleva L (2014) Comparison of the substrate specificity of two ring-hydroxylating dioxygenases from Sphingomonas sp. VKM B-2434 to polycyclic aromatic hydrocarbons. Biodegradation 25(5):693–703

    Article  CAS  PubMed  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil-recovery and oil pollution remediation—a review. Biores Technol 51(1):1–12

    Article  CAS  Google Scholar 

  • Bansal-Mutalik R, Nikaido H (2014) Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 111(13):4958–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H et al (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66(5):1834–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104(1–3):55–67

    Article  CAS  PubMed  Google Scholar 

  • Bazaka K, Crawford RJ, Nazarenko EL, Ivanova EP (2011) Bacterial extracellular polysaccharides. In: Linke D, Goldman A (eds) Bacterial adhesion: chemistry, biology and physics. Adv Exp Med Biol 715:213–226

    Google Scholar 

  • Belchik SM, Schaeffer SM, Hasenoehrl S, Xun LY (2010) A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Biodegradation 21(3):431–439

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson G, Torneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Pollut 158(9):2865–2871

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson G, Torneman N, De Lipthay JR, Sorensen SJ (2013) Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. Microb Ecol 65(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Birak PS, Miller CT (2009) Dense non-aqueous phase liquids at former manufactured gas plants: challenges to modeling and remediation. J Contam Hydrol 105(3–4):81–98

    Article  CAS  PubMed  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordenave S, Goni-urriza M, Vilette C, Blanchard S, Caumette P, Duran R (2008) Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 10(12):3201–3211

    Article  CAS  PubMed  Google Scholar 

  • Bouchez-Naitali M, Blanchet D, Haeseler F, Vandecasteele JP, VandeCasteele JP (2008) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) 341–411 pp

    Google Scholar 

  • Brown DG, Gupta L, Kim T-H, Moo-Young HK, Coleman AJ (2006) Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the eastern United States. Chemosphere 65(9):1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Calvillo YM, Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45(3):383–390

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Lai Q, Yuan J, Shao Z (2015) Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73(T). Sci Rep 5:7741

    Google Scholar 

  • Carmichael LM, Pfaender FK (1997) The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation 8(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Cebron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73(2):148–159

    Article  CAS  PubMed  Google Scholar 

  • Cebron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol 75(19):6322–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SC, Peng JJ, Duan GL (2016) Enrichment of functional microbes and genes during pyrene degradation in two different soils. J Soils Sediments 16(2):417–426

    Article  CAS  Google Scholar 

  • Choi DH, Kwon YM, Kwon KK, Kim S-J (2015) Complete genome sequence of Novosphingobium pentaromativorans US6-1(T). Stan Genomic Sci 10:107

    Google Scholar 

  • Chrzanowski L, Lawniczak L, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28(2):401–419

    Article  CAS  PubMed  Google Scholar 

  • Crocker FH, Guerin WF, Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ Sci Technol 29(12):2953–2958

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple BP, Swadling Y (1997) Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology-Sgm 143:1203–1210

    Article  CAS  Google Scholar 

  • Dasari S, Subbaiah KCV, Wudayagiri R, Valluru L (2014) Biosurfactant-mediated biodegradation of polycyclic aromatic hydrocarbons-naphthalene. Bioremediat J 18(3):258–265

    Article  CAS  Google Scholar 

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52(2):149–182

    Article  CAS  PubMed  Google Scholar 

  • Devos DP (2014) PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 22(1):14–20

    Article  CAS  PubMed  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gennaro P, Terreni P, Masi G, Botti S, De Ferra F, Bestetti G (2010) Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Appl Microbiol Biotechnol 87(1):297–308

    Article  CAS  PubMed  Google Scholar 

  • Diaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11(5):467–475

    Article  CAS  PubMed  Google Scholar 

  • Diaz E, Jimenez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24(3):431–442

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou-Christidis P, Autenrierh RL, Abraham MH (2008) Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation. Environ Toxicol Chem 27(7):1496–1504

    Article  CAS  PubMed  Google Scholar 

  • Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K et al (2010) Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 76(14):4765–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dionisi HM, Chewning CS, Morgan KH, Menn FM, Easter JP, Sayler GS (2004) Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl Environ Microbiol 70(7):3988–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK (2011) Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 77(4):1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Bai X, Lai Q, Xie Y, Chen X, Shao Z (2014) Draft genome sequence of Sphingobium sp. strain C100, a polycyclic aromatic hydrocarbon-degrading bacterium from the deep-sea sediment of the Arctic Ocean. Genome Announcements 2(1):e01210–e01213

    Google Scholar 

  • Doyle E, Muckian L, Hickey AM, Clipson N (2008) Microbial PAH degradation. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 65. Advances in applied microbiology, pp 27–66

    Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi A, Or D (2015) Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour Res 51(12):9804–9827

    Article  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an arthrobacter species of hydrocarbons partitioned into an organic-solvent. Appl Environ Microbiol 57(5):1441–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elayan NM, Treleaven WD, Cook RL (2008) Monitoring the effect of three humic acids on a model membrane system using P-31 NMR. Environ Sci Technol 42(5):1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Endo R, Ohtsubo Y, Tsuda M, Nagata Y (2007) Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol 189(10):3712–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16(7):1961–1981

    Article  CAS  PubMed  Google Scholar 

  • Feng WH, Swift S, Singhal N (2013) Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloids Surf B-Biointerfaces 105:43–50

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Luqueno F, Valenzuela-Encinas C, Marsch R, Martinez-Suarez C, Vazquez-Nunez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review. Environ Sci Pollut Res 18(1):12–30

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  PubMed  Google Scholar 

  • Flocco CG, Gomes NCM, Mac Cormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 11(3):700–714

    Article  CAS  PubMed  Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180(9):2522–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes S, Ding GC, Cardenas F, Smalla K, Seeger M (2015) Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. Fems Microbiol Ecol 91(10):flv110

    Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61(4):393–410

    Google Scholar 

  • Gomes NCM, Borges LR, Paranhos R, Pinto FN, Krogerrecklenfort E, Mendonca-Hagler LCS et al (2007) Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 73(22):7392–7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63(10):4111–4115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181(10):3310–3316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu HP, Lou J, Wang HZ, Yang Y, Wu LS, Wu JJ et al (2016) Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and Phanerochaete chrysosporium. Front Microbiol 7

    Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to 2 bacterial species. Appl Environ Microbiol 58(4):1142–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31(6):1504–1512

    Article  CAS  Google Scholar 

  • Guha S, Jaffe PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30(4):1382–1391

    Article  CAS  Google Scholar 

  • Guha S, Jaffe PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32(15):2317–2324

    Article  CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67(2):225–243

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Han X-M, Liu Y-R, Zheng Y-M, Zhang X-X, He J-Z (2014) Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environ Sci Pollut Res 21(16):9754–9763

    Article  CAS  Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61(1):27–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York

    Google Scholar 

  • Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105(25):8601–8606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009) Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458(7236):367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessee CT, Li QX (2016) Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four mycobacterium species. Appl Environ Microbiol 82(11):3357–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B-Biointerfaces 14(1–4):105–119

    Article  CAS  Google Scholar 

  • Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39(5):649–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong HD, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J Biol Chem 281(11):7568–7577

    Article  CAS  PubMed  Google Scholar 

  • Huang JZ, Schell MA (1991) Invivo interactions of the NahR transcriptional activator with its target sequences—inducer-mediated changes resulting in transcription activation. J Biol Chem 266(17):10830–10838

    CAS  PubMed  Google Scholar 

  • Jain PK (2015) Microbial biodegradation of polycyclic aromatic hydrocarbons. In: Harzevili FD, Chen H (eds), 331–349 pp

    Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63(4):452–459

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Styrishave B, Aamand J (2014) Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil. FEMS Microbiol Ecol 88(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Johnston CG, Johnston GP (2012) Bioremediation of polycyclic aromatic hydrocarbons. In: Microbial biotechnology: energy and environment, pp 279–296

    Google Scholar 

  • Jones RM, Britt-Compton B, Williams PA (2003) The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol 185(19):5847–5853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J (2006) Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45(40):12380–12391

    Article  CAS  PubMed  Google Scholar 

  • Juhasz AL, Aleer S, Adetutu EM (2014) Predicting PAH bioremediation efficacy using bioaccessibility assessment tools: validation of PAH biodegradation-bioaccessibility correlations. Int Biodeterior Biodegradation 95:320–329

    Article  CAS  Google Scholar 

  • Kaczorek E, Salek K, Guzik U, Jesionowski T, Cybulski Z (2013) Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. Chemosphere 90(2):471–478

    Article  CAS  PubMed  Google Scholar 

  • Kahng HY, Byrne AM, Olsen RH, Kukor JJ (2000) Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 182(5):1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76(3):709–717

    Article  CAS  PubMed  Google Scholar 

  • Kallimanis A, Karabika E, Mavromatis K, Lapidus A, LaButti KM, Liolios K et al (2011) Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1. Stan Genomic Sci 5(1):144–153

    Article  CAS  Google Scholar 

  • Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M et al (2016) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100(4):1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3(2):136–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69(11):6688–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara K, Kuraishi H, Zahringer U (1999) Chemical structure and function of glycosphingolipids of Sphingomonas spp. and their distribution among members of the alpha-4 subclass of Proteobacteria. J Ind Microbiol Biotechnol 23(4–5):408–413

    Article  CAS  PubMed  Google Scholar 

  • Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK (2014) Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 4:290–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW et al (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19(6):859–881

    Article  CAS  PubMed  Google Scholar 

  • Kiyohara H, Nagao K, Kouno K, Yano K (1982) Phenanthrene-degrading phenotype of alcaligenes-faecalis AFK2. Appl Environ Microbiol 43(2):458–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korchowiec B, Corvis Y, Viitala T, Feidt C, Guiavarch Y, Corbier C et al (2008) Interfacial approach to polyaromatic hydrocarbon toxicity: phosphoglyceride and cholesterol monolayer response to phenanthrene, anthracene, pyrene, chrysene, and benzo a pyrene. J Phys Chem B 112(43):13518–13531

    Article  CAS  PubMed  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185(13):3828–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulakov LA, Chen SC, Allen CCR, Larkin MJ (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71(4):1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2016) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings—assessments in liquid- and slurry-phase systems. Int Biodeterior Biodegradation 108:149–157

    Article  CAS  Google Scholar 

  • Kwak Y, Park G-S, Lee S-E, Li QX, Shin J-H (2014) Genome sequence of Mycobacterium aromaticivorans JS19b1(T), a novel isolate from Hawaiian soil. J Biotechnol 186:137–138

    Article  CAS  PubMed  Google Scholar 

  • Kweon O, Kim S-J, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. MBio 1(2):e00135-10

    Google Scholar 

  • Kweon O, Kim S-J, Holland RD, Chen H, Kim D-W, Gao Y et al (2011) Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol 193(17):4326–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: DeVoogt P (ed) Reviews of environmental contamination and toxicology, vol 237. Rev Environ Contam Toxicol 237:105–121

    Google Scholar 

  • Lafortune I, Juteau P, Deziel E, Lepine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57(3):455–468

    Article  CAS  PubMed  Google Scholar 

  • Lahlou M, Ortega-Calvo JJ (1999) Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions. Environ Toxicol Chem 18(12):2729–2735

    Article  CAS  Google Scholar 

  • Lai Q, Li W, Wang B, Yu Z, Shao Z (2012) Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J Bacteriol 194(23):6677

    Google Scholar 

  • Laor Y, Strom PF, Farmer WJ (1999) Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res 33(7):1719–1729

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16(3):282–290

    Article  CAS  PubMed  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181(2):531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97(6):2327–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhu L (2014) Surfactant-modified fatty acid composition of Citrobacter sp SA01 and its effect on phenanthrene transmembrane transport. Chemosphere 107:58–64

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang H, Hua F, Su M, Zhao Y (2014) Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. Biores Technol 155:213–219

    Article  CAS  Google Scholar 

  • Li XF, Hou LJ, Liu M, Zheng YL, Li Y, Lin XB (2015) Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Appl Microbiol Biotechnol 99(8):3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Li Z-Y, Wu Y-H, Huo Y-Y, Cheng H, Wang C-S, Xu X-W (2016) Complete genome sequence of a benzo a pyrene-degrading bacterium Altererythrobacter epoxidivorans CGMCC 1.7731(T). Mar Genomics 25:39–41

    Article  PubMed  Google Scholar 

  • Liland NS, Simonsen AC, Duelund L, Torstensen BE, Berntssen MHG, Mouritsen OG (2014) Polyaromatic hydrocarbons do not disturb liquid-liquid phase coexistence, but increase the fluidity of model membranes. Chem Phys Lipid 184:18–24

    Article  CAS  Google Scholar 

  • Liu Y, Ma X, Zeng G, Zhong H, Liu Z, Jiang Y et al (2014) Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation. Appl Microbiol Biotechnol 98(24):10231–10241

    Article  CAS  PubMed  Google Scholar 

  • Lonneborg R, Brzezinski P (2011) Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds. BMC Biochemistry 12(1):49

    Google Scholar 

  • Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology-Sgm 154:3609–3623

    Article  CAS  Google Scholar 

  • Maeda AH, Nishi S, Ozeki Y, Ohta Y, Hatada Y, Kanaly RA (2013) Draft genome sequence of Sphingobium sp. strain KK22, a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Genome Announcements 1(6)

    Google Scholar 

  • Mahanty B, Pakshirajan K, Dasu VV (2011) Understanding the complexity and strategic evolution in PAH remediation research. Crit Rev Environ Sci Technol 41(19):1697–1746

    Article  CAS  Google Scholar 

  • Mangwani N, Kumari S, Das S (2015) Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl Microbiol Biotechnol 99(23):10283–10297

    Article  CAS  PubMed  Google Scholar 

  • Marrakchi H, Laneelle M-A, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85

    Article  CAS  PubMed  Google Scholar 

  • Messina E, Denaro R, Crisafi F, Smedile F, Cappello S, Genovese M et al (2016) Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar Genomics 25:11–13

    Article  PubMed  Google Scholar 

  • Missner A, Pohl P (2009) 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10(9–10):1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata N, Iwahori K, Foght JM, Gray MR (2004) Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol 70(1):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty S, Mukherji S (2012) Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons. Appl Microbiol Biotechnol 94(1):193–204

    Article  CAS  PubMed  Google Scholar 

  • Mooney A, O’Leary ND, Dobson ADW (2006) Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72(2):1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55(5):609–618

    Article  CAS  PubMed  Google Scholar 

  • Murinova S, Dercova K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014

    Google Scholar 

  • Nam K, Moon HS, Kim JY, Kukor JJ (2002) Linkage between biodegradation of polycyclic aromatic hydrocarbons and phospholipid profiles in soil isolates. J Microbiol Biotechnol 12(1):77–83

    CAS  Google Scholar 

  • Neher TM, Lueking DR (2009) Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake. Can J Microbiol 55(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenation. J Gen Appl Microbiol 47(6):279–305

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y, Delawary M, Kimbara K, Takagi M, Ohta A, Nagata Y (2001) BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102. J Biol Chem 276(39):36146–36154

    Article  CAS  PubMed  Google Scholar 

  • Ojwang LM, Cook RL (2013) Environmental conditions that influence the ability of humic acids to induce permeability in model biomembranes. Environ Sci Technol 47(15):8280–8287

    CAS  PubMed  Google Scholar 

  • Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44(3):373–381

    Article  CAS  PubMed  Google Scholar 

  • Pagnout C, Frache G, Poupin P, Maunit B, Muller J-F, Ferard J-F (2007) Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc(2)155. Res Microbiol 158(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Huang P, Xiong G, Maser E (2015) Isolation and identification of a repressor TetR for 3,17 beta-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:205–212

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Ju KS (2011) Rieske-type dioxygenases: key enzymes in the degradation of aromatic hydrocarbons. In: Comprehensive biotechnology, vol 6: Environmental biotechnology and safety, 2nd edn, pp 115–134

    Google Scholar 

  • Park W, Padmanabhan P, Padmanabhan S, Zylstra GJ, Madsen EL (2002) nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. Microbiology-SGM 148:2319–2329

    Google Scholar 

  • Park HH, Lim WK, Shin HJ (2005) In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim Biophy Acta-General Subjects 1725(2):247–255

    Article  CAS  Google Scholar 

  • Payne DE, Boles BR (2016) Emerging interactions between matrix components during biofilm development. Curr Genet 62(1):137–141

    Article  CAS  PubMed  Google Scholar 

  • Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    Article  CAS  PubMed  Google Scholar 

  • Peng J-J, Wang N, Li H-J, Cai C (2011) Microbial degradation mechanisms of soil high molecular weight PAHs and affecting factors: a review. Shengtaixue Zazhi 30(11):2621–2627

    Google Scholar 

  • Perfumo A, Rudden M, Smyth TJP, Marchant R, Stevenson PS, Parry NJ et al (2013) Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Appl Microbiol Biotechnol 97(16):7297–7306

    Article  CAS  PubMed  Google Scholar 

  • Pouli M, Agathos SN (2011) Bioremediation of PAH-contaminated sites: from pathways to bioreactors. In: Koukkou AI (ed), 119–147 pp

    Google Scholar 

  • Regonne RK, Martin F, Mbawala A, Ngassoum MB, Jouanneau Y (2013) Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ. Environ Pollut 180:145–151

    Article  CAS  PubMed  Google Scholar 

  • Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Biores Technol 102(11):6377–6384

    Article  CAS  Google Scholar 

  • Rojo-Nieto E, Perales-Vargas-Machuca JA (2012) Microbial degradation of PAHs: organisms and environmental compartments. In: Singh SN (ed) Microbial degradation of xenobiotics. Environ Sci 263–290

    Google Scholar 

  • Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M et al (2016) Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. Environ Sci Pollut Res 23(5):4242–4256

    Article  CAS  Google Scholar 

  • Schell MA (1985) Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene-product. Gene 36(3):301–309

    Article  CAS  PubMed  Google Scholar 

  • Schell MA, Brown PH, Raju S (1990) Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator. J Biol Chem 265(7):3844–3850

    CAS  PubMed  Google Scholar 

  • Schippers C, Gessner K, Muller T, Scheper T (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz a anthracene, and benzo a pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62(1):13–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler L, Chadhain SMN, Jouanneau Y, Meyer C, Zylstra GJ, Hols P et al (2008) Characterization of a novel angular dioxygenase from fluorene-degrading Spingomonas sp. strain LB126. Appl Environ Microbiol 74(4):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2012) Mycobacterium aromativorans JS19b1(T) degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. Int Biodeterior Biodegradation 70:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty AR, de Gannes V, Obi CC, Lucas S, Lapidus A, Cheng JF et al (2015) Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs 1-4. Stand Genomic Sci 10

    Google Scholar 

  • Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpanen S, Makela R, Mikola J, Silvennoinen H, Romantschuk M (2016) Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-beta-cyclodextrin to enhance biostimulation. Int Biodeterior Biodegradation 106:117–126

    Article  CAS  Google Scholar 

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62(10):2122–2128

    Article  CAS  PubMed  Google Scholar 

  • Song M, Luo CL, Jiang LF, Zhang DY, Wang YJ, Zhang G (2015) Identification of benzo a pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing. Appl Environ Microbiol 81(21):7368–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164(3):297–303

    Article  CAS  PubMed  Google Scholar 

  • Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4(3):169–182

    Article  PubMed  Google Scholar 

  • Story SP, Parker SH, Hayasaka SS, Riley MB, Kline EL (2001) Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. J Ind Microbiol Biotechnol 26(6):369–382

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Yang XY (2009) Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil. Sci Total Environ 407(3):1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18(10):464–470

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe LC, Brown AK, Dover LG (2010) The rhodococcal cell envelope: composition, organisation and biosynthesis. In: Alvarez HM (ed) Biology of Rhodococcus. Microbiology monographs, vol 16, pp 29–71

    Google Scholar 

  • Tang WC, White JC, Alexander M (1998) Utilization of sorbed compounds by microorganisms specifically isolated for that purpose. Appl Microbiol Biotechnol 49(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Yu H, Li Q, Wang X, Gai Z, Yin G et al (2011) Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol 193(23):6789–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tecon R, Or D (2016) Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness. Sci Rep 6:19409

    Google Scholar 

  • Touw DS, Patel DR, van den Berg B (2010) The crystal structure of OprG from Pseudomonas aeruginosa, a potential channel for transport of hydrophobic molecules across the outer membrane. PLoS ONE 5(11)

    Google Scholar 

  • Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68(3):474–500

    Google Scholar 

  • Uyttebroek M, Ortega-Calvo J-J, Breugelmans P, Springael D (2006) Comparison of mineralization of solid-sorbed phenanthrene by polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium spp. and Sphingomonas spp. Appl Microbiol Biotechnol 72(4):829–836

    Article  CAS  PubMed  Google Scholar 

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71(7):3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidehi K, Kulkarni SD (2012) Microbial remediation of polycyclic aromatic hydrocarbons: an overview. Res J Chem Environ 16(4):200–212

    Google Scholar 

  • Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48(1):19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15(4):401–407

    Article  PubMed  CAS  Google Scholar 

  • van den Berg B, Bhamidimarri SP, Winterhalter M (2015) Crystal structure of a COG4313 outer membrane channel. Sci Rep 5

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Google Scholar 

  • Vinas M, Sabate J, Guasp C, Lalucat J, Solanas AM (2005) Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium. Can J Microbiol 51(11):897–909

    Article  CAS  PubMed  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial Extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554

    Article  CAS  PubMed  Google Scholar 

  • Waigi MG, Kang F, Goikavi C, Ling W, Gao Y (2015) Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review. Int Biodeterior Biodegradation 104:333–349

    Article  CAS  Google Scholar 

  • Wang Y, Rawlings M, Gibson DT, Labbe D, Bergeron H, Brousseau R et al (1995) Identification of a membrane-protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246(5):570–579

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jin D, Zhou L, Wu L, An W, Zhao L (2014a) Draft genome sequence of Advenella kashmirensis strain W13003, a polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announcements 2(1):e00003–e00014

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Jin D, Zhou L, Wu L, Qi L, Li C et al (2014b) Draft genome sequence of halotolerant polycyclic aromatic hydrocarbon-degrading Pseudomonas bauzanensis strain W13Z2. Genome Announcements 2(5):e01049–e01114

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Jin D, Zhou L, Zhang Z (2015) Draft genome sequence of Ochrobactrum anthropi strain W13P3, a halotolerant polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announcements 3(4):e00867–e00915

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Jin D, Zhou L, Zhang Z (2016) Draft genome sequence of Pannonibacter phragmitetus strain CGMCC9175, a halotolerant polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announcements 4(1):e01675–e01715

    PubMed  PubMed Central  Google Scholar 

  • Wehrer M, Rennert T, Mansfeldt T, Totsche KU (2011) Contaminants at former manufactured gas plants: sources, properties, and processes. Crit Rev Environ Sci Technol 41(21):1883–1969

    Article  CAS  Google Scholar 

  • Whitman BE, Lueking DR, Mihelcic JR (1998) Naphthalene uptake by a Pseudomonas fluorescens isolate. Can J Microbiol 44(11):1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, Wattiau P, Harms H (2002) Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ Microbiol 4(10):612–616

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, Pelz O, Bernasconi SM, Andersen N, Harms H (2003) Influence of the growth substrate on ester-linked phospho- and glycolipid fatty acids of PAH-degrading Mycobacterium sp. LB501T. Environ Microbiol 5(8):672–680

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8:51–62

    PubMed  Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7(5):415–423

    Article  Google Scholar 

  • Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB, Fleming KG et al (2014) E. coli outer membrane and interactions with OmpLA. Biophys J 106(11):2493–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XH, Xia N, Lai YJ, Dong JW, Zhao PJ, Zhu BT et al (2015) Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. Chemosphere 128:236–244

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Chen RF, Shiaris MP (1994) Metabolism of naphthalene, fluorene, and phenanthrene - preliminary characterization of a cloned gene-cluster from Pseudomonas-putida NCIB-9816. J Bacteriol 176(8):2158–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hunter W, Tao S, Gan J (2009) Microbial availability of different forms of phenanthrene in soils. Environ Sci Technol 43(6):1852–1857

    Article  CAS  PubMed  Google Scholar 

  • Yang YY, Wang J, Liao JQ, Xie SG, Huang Y (2014) Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb Ecol 68(4):785–793

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Liao J, Xie S, Huang Y (2015) Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 99(4):1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. CRC Crit Rev Microbiol 15(3):247–268

    Article  CAS  Google Scholar 

  • Zhang Y, Qin F, Qiao J, Li G, Shen C, Huang T et al (2012) Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 194(13):3546–3546

    Google Scholar 

  • Zhang W, Sun J, Ding W, Lin J, Tan R, Lu L et al (2015) Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol 5

    Google Scholar 

  • Zhou HW, Guo CL, Wong YS, Tam NFY (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262(2):148–157

    Article  CAS  PubMed  Google Scholar 

  • Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190(16):5672–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the O.N. Allen Professorship in Soil Microbiology (to WJH). The authors thank Natalie Kirk for assistance in the development of illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Hickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Gannes, V., Hickey, W.J. (2017). Genetic Adaptations of Bacteria for Metabolism of Polycyclic Aromatic Hydrocarbons. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_7

Download citation

Publish with us

Policies and ethics