Skip to main content

Advertisement

Log in

Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges.

Discussion and conclusions

Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism–microorganism, microorganism–plant, microorganism–soil, and microorganisms–PAHs.

Perspectives

Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remediate PAHs-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336. doi:10.1007/s00253-010-2498-2

    CAS  Google Scholar 

  • Adonis MI, Riquelme RM, Gil R, Rios C, Rodriguez L, Rodriguez EM (2003) PAHs and mutagenicity of inhalable and respirable diesel particulate matter in Santiago, Chile. Polycycl Aromat Compd 23:495–514

    CAS  Google Scholar 

  • Aertsen A, Michiels CW (2005) Diversity or die: generation of diversity in response to stress. Crit Rev Microbiol 31:69–78. doi:10.1080/10408410590921718

    Google Scholar 

  • Aichberger H, Andreas PL, Celis R, Braun R, Ottner F, Rost H (2006) Assessment of factors governing biodegradability of PAHs in three soils aged under field conditions. Soil Sediment Contam 15:73–85

    CAS  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Google Scholar 

  • Alvarez-Bernal D, Garcia-Diaz EL, Contreras-Ramos SM, Dendooven L (2006) Dissipation of polycyclic hydrocarbons from soil added with manure or vermicompost. Chemosphere 65:1642–1651

    CAS  Google Scholar 

  • Alvarez-Bernal D, Contreras-Ramos S, Marsch R, Dendooven L (2007) Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs. Int J Phytorem 9:79–90

    CAS  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell´Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412. doi:10.1016/j.chemosphere.2004.06.013

    CAS  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophilic Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523

    CAS  Google Scholar 

  • Aono R, Inoue A (1998) Organic solvent tolerance in microorganisms. In: Horikoshi K, Grant WD (eds) Extremophyles: microbial life in extreme environments. Wiley-Liss, New York, pp 287–310

    Google Scholar 

  • Armishaw R, Bardos RP, Dunn RM, Hill JM, Pearl M, Rampling T, Wood PA (1992) Review of innovative contaminated soil clean-up processes. Warren Springs, Stevenage

    Google Scholar 

  • Ashok BT, Saxena S, Musarrat J (1995) Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett Appl Microbiol 21:246–248

    CAS  Google Scholar 

  • Atagana HI (2006) Biodegradation of polycyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper(II) ions. World J Microbiol Biotechnol 22:1145–1153. doi:10.1007/s11274-006-9155-z

    CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2006) Fungal bioremediation of creosote-contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut 172:201–219. doi:10.1007/s11270-005-9074-x

    CAS  Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Contam Hydrol 25:157–170

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilisation and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    CAS  Google Scholar 

  • Bello YM (2007) Biodegradation of Lagoma crude oil using pig dung. Afr J Biotechnol 6:2821–2825

    Google Scholar 

  • Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline–alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760

    CAS  Google Scholar 

  • Binet P, Portal JM, Leyval C (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    CAS  Google Scholar 

  • Bishnoi K, Kumar R, Bishnoi NR (2008) Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J Sci Ind Res India 67:538–542

    CAS  Google Scholar 

  • Bonnet JL, Guiraud P, Dusser M, Kadri M, Laffosse J, Steiman R, Bohatier J (2005) Assessment of anthracene toxicity toward environmental eukaryotic microorganisms: Tetrahymena pyriformis and selected micromycetes. Ecotoxicol Environ Saf 60:87–100. doi:10.1016/j.ecoenv.2003.10.001

    CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal–bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    CAS  Google Scholar 

  • Bouchez N, Rakatozafy MH, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Google Scholar 

  • Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762. doi:10.1016/j.resmic.2006.03.005

    CAS  Google Scholar 

  • Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43:17–22

    CAS  Google Scholar 

  • Cai Q-Y, Mo C-H, Li Y-H, Zeng Q-Y, Katsoyiannis A, Wu Q-T, Férard J-F (2007) Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere 68:159–168. doi:10.1016/j.chemosphere.2006.12.015

    CAS  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Meth 73:148–159. doi:10.1016/j.mimet.2008.01.009

    Google Scholar 

  • Chaineau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environ Qual 29:569–578

    CAS  Google Scholar 

  • Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497. doi:10.1016/j.soilbio.2005.01.012

    CAS  Google Scholar 

  • Chavez-Gomez B, Quintero R, Esparza-Garcia F, Mesta-Howard AM, de la Serna FJZD, Hernandez-Rodriguez CH, Guillen T, Poggi-Varaldo HM, Barrera-Cortes J, Rodriguez-Vazquez R (2003) Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Biores Technol 89:177–183. doi:10.1016/S0960-8524(03)00037-3

    CAS  Google Scholar 

  • Christova N, Tuleva B, Lalchev Z, Jordanova A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Nat Forsch C J Biosci 59:70–74

    CAS  Google Scholar 

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2008) Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biol Biochem 40:1954–1959. doi:10.1016/j.soilbio.2008.04.009

    CAS  Google Scholar 

  • Cui CZ, Zeng C, Wan X, Chen D, Zhang JY, Shen P (2008) Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingromonas sp 12A and Pseudomonas sp 12B. J Microbiol Biotechnol 18:63–66

    CAS  Google Scholar 

  • Da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405. doi:10.1023/A:1023994618879

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234. doi:10.1016/j.chemosphere.2008.05.015

    CAS  Google Scholar 

  • De Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589. doi:10.1016/j.copbio.2008.10.004

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Díaz-Ramírez IJ, Ramírez-Saad H, Gutiérrez-Rojas M, Favela-Torres E (2003) Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Can J Microbiol 49:755–761

    Google Scholar 

  • Dubeau D, Déziel E, Woods D, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263. doi:10.1186/1471-2180-9-263

    Google Scholar 

  • Edlund A, Jansson JK (2008) Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiol Ecol 65:513–525. doi:10.1111/j.1574-6941.2008.00513.x

    CAS  Google Scholar 

  • El Azhari N, Devers-Lamrani M, Chatagnier G, Rouard N, Martin-Laurent F (2010) Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs. J Hazard Mater 117:593–601. doi:10.1016/j.jhazmat.2009.12.074

    Google Scholar 

  • Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Meth 56:297–314. doi:10.1016/j.mimet.2003.11.006

    CAS  Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutierrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413. doi:10.1016/j.chemosphere.2004.10.034

    CAS  Google Scholar 

  • Farahat LA, El-Gendy NS (2008) Biodegradation of Baleym Mix crude oil in soil microcosm by some locally isolated Egyptian bacterial strains. Soil Sediment Contam 17:150–162. doi:10.1080/15320380701872886

    CAS  Google Scholar 

  • Fernández-Luqueño F, Marsch R, Espinosa-Victoria D, Thalasso F, Hidalgo-Lara ME, Munive A, Luna-Guido ML, Dendooven L (2008) Remediation of PAHs in a saline–alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Sci Total Environ 402:18–28. doi:10.1016/j.scitotenv.2008.04.040

    Google Scholar 

  • Fernández-Luqueño F, Thalasso F, Luna-Guido ML, Ceballos-Ramírez JM, Ordoñez-Ruíz IM, Dendooven L (2009) Flocculant in wastewater affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil. J Environ Manage. doi: 10.1016/j.jenvman.2009.03.010

  • Fredslund L, Sniegowski K, Wick LY, Jacobsen CS, De Mot R, Springael D (2008) Surface motility of polycyclic aromatic hydrocarbon (PAH)-degrading mycobacteria. Res Microbiol 159:255–262. doi:10.1016/j.resmic.2008.02.007

    CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soils: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytophathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (1999) Utilization of genetically engineered microorganisms (GEMs) for bioremediation. J Chem Technol Biotechnol 74:599–606

    CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494. doi:10.1080/10643380490452362

    CAS  Google Scholar 

  • Gerbeth A, Krausse S, Gemende B, Muller RH (2004) Search of microorganisms that degrade PAHs under alkaline conditions. Eng Life Sci 4:311–318

    CAS  Google Scholar 

  • Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35:4126–4136

    CAS  Google Scholar 

  • Grant RJ, Muckian LM, Clipson NJW, Doyle EM (2007) Microbial community changes during the bioremediation of creosote-contaminated soil. Lett Appl Microbiol 44:293–300

    CAS  Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the Incp-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871. doi:10.1046/j.1462-2920.2002.00305.x

    CAS  Google Scholar 

  • Guerin W, Boyd S (1992) Differential bioavailability of soil-sorbed naphtalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    CAS  Google Scholar 

  • Guo CL, Zhou HW, Wong YS, Tam NFY (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061. doi:10.1016/j.marpolbul.2005.02.012

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetic of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243. doi:10.1271/bbb.67.225

    CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935. doi:10.1016/j.soilbio.2007.02.008

    CAS  Google Scholar 

  • Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, Cambridge

    Google Scholar 

  • Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66

    CAS  Google Scholar 

  • Hesham AE, Khan S, Liu XC, Zhang Y, Wang ZY, Yang M (2006) Application of PCR-DGGE to analyse the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil. Yeast 23:879–887. doi:10.1002/yea.1401

    CAS  Google Scholar 

  • Hilyard EJ, Jones-Meehan JM, Spargo BJ, Hill RT (2008) Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. Appl Environ Microbiol 74:1176–1182. doi:10.1128/AEM.01518-07

    CAS  Google Scholar 

  • Ho CH, Applegate B, Banks MK (2007) Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytoremediat 9:107–114. doi:10.1080/15226510701232765

    CAS  Google Scholar 

  • Hori MON, Amund DI (2000) Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z Naturforsch C55:890–897

    Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Peralba MCR, Camargo FAO (2009) Improved enrichment and isolation of polycyclic aromatic hydrocarbons (PAH)-degrading microorganisms in soil using anthracene as a model PAH. Curr Microbiol 58:628–634. doi:10.1007/s00284-009-9381-3

    CAS  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459. doi:10.1007.s00253-003-1265-z

    CAS  Google Scholar 

  • Johnsen AR, Karlson U (2005) PAH degradation capacity of soil microbial communities—does it depend on PAH exposure? Microb Ecol 50:488–495. doi:10.1007/s00248-005-0022-5

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84. doi:10.1016/j.envpol.2004.04.015

    CAS  Google Scholar 

  • Joo HS, Shoda M, Phae CG (2007) Degradation of diesel oil in soil using a food waste composting process. Biodegradation 18:597–605. doi:10.1007/s10532-006-9092-4

    Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401. doi:10.1046/j.1472-765x.2000.00733.x

    CAS  Google Scholar 

  • Junca H, Pieper DH (2004) Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6:95–110

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    CAS  Google Scholar 

  • Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp strain A5. Appl Environ Microbiol 69:6688–6697. doi:10.1128/AEM.69.11.6688-6697.2003

    CAS  Google Scholar 

  • Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231. doi:10.1146/annurev.micro.58.030603.123654

    CAS  Google Scholar 

  • Kim JD, Lee CG (2007) Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium–fungus co-cultures. Biotechnol Bioprocess Eng 12:410–416

    CAS  Google Scholar 

  • Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 67:275–285. doi:10.1007/s00253-004-1796-y

    CAS  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:859–881. doi:10.1007/s10532-008-9189-z

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors T (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    CAS  Google Scholar 

  • Kolomytseva MP, Randazzo D, Baskunov BP, Scozzafava A, Briganti F, Golovleva LA (2009) Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469. Bioresour Tecnol 100:839–844. doi:10.1016/j.biortech.2008.06.059

    CAS  Google Scholar 

  • Lambert L, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the basiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60:3597–3601

    CAS  Google Scholar 

  • Laurie AD, Jones GL (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66:1814–1817

    CAS  Google Scholar 

  • Lee SE, Seo JS, Keum YS, Lee KJ, Li OX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp JS14. Proteomics 7:2059–2069. doi:10.1002/pmic.200600489

    CAS  Google Scholar 

  • Lenski RE (1993) Evaluating the fate of genetically modified microorganisms in the environment: are they inherently less fit? Experientia 49:201–209

    CAS  Google Scholar 

  • Leonardi V, Sasek V, Petruccioli M, D´Annibale A, Erbanova P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegrad 60:165–170. doi:10.1016/j.ibiod.2007.02.004

    CAS  Google Scholar 

  • Li X, Lin X, Li P, Liu W, Wang L, Ma F, Chukwuka KS (2009) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605. doi:10.1016/j.jhazmat.2009.07.044

    CAS  Google Scholar 

  • Liu J, Min H, Ye L (2008) The negative interaction between the degradation of phenanthrene and tricyclazole in medium, soil and soil/compost mixture. Biodegradation 19:695–703. doi:10.1007/s10532-007-9174-y

    CAS  Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:22–29. doi:10.1007/s10653-009-9262-5

    Google Scholar 

  • Lors C, Mossmann JR, Barbe P (2004) Phenotypic responses of the soil bacterial community to polycyclic aromatic hydrocarbon contamination in soils. Polycycl Aromat Compd 24:21–36

    CAS  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44. doi:10.1038/nrmicro731

    CAS  Google Scholar 

  • Macgillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic-hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59:1613–1615

    CAS  Google Scholar 

  • Madzen T, Kristensen P (1997) Effect of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 16:631–637

    Google Scholar 

  • Maillacheruvu KY, Pathan IA (2009) Biodegradation of naphthalene, phenanthrene, and pyrene under anaerobic conditions. J Environ Sci Healt A 44:1315–1326. doi:10.1080/10934520903212956

    CAS  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)pent-4-enoic acid. Microbiol-SGM 153:2104–2115. doi:10.1099/mic.0.2006/004218-0

    CAS  Google Scholar 

  • Mancera-Lopez M, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda Barrera-Cortes J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61:151–160. doi:10.1016/j.ibiod.2007.05.012

    CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. doi:10.1007/s002530100701

    CAS  Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell JR, Stapleton MJ (1993) Bioavailability of sorbed- and separate-phase chemicals. Biodegradation 4:141–153

    CAS  Google Scholar 

  • Minai-Tehrani D, Minoui S, Herfatmanesh A (2009) Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bull Environ Contam Toxicol 82:179–184. doi:10.1007/s00128-008-9548-9

    CAS  Google Scholar 

  • Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK (1993) Suicidal genetic elements and their use in the biological containment of bacteria. Annu Rev Microbiol 47:139–166

    CAS  Google Scholar 

  • Molina-Barahona L, Ridríguez-Vazquez R, Hernández-Velasco M, Vega-Jarquín G, Zapata-Pérez O, Mendoza-Cantu A, Albores A (2004) Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl Soil Ecol 27:165–175. doi:10.1016/j.apsoil.2004.04.002

    Google Scholar 

  • Moorman TB, Cowan JK, Arthur EL, Coats JR (2001) Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fertil Soils 33:541–545. doi:10.1007/s003740100367

    CAS  Google Scholar 

  • Mueller KE, Shann JR (2006) PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64:1006–1014

    CAS  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289. doi:10.1007/s00248-006-9199-5

    CAS  Google Scholar 

  • Nowak J (2008) Structure and expression of catabolic operons for phenol degradation in bacteria. Postepy Mikrobiologii 47:119–126

    CAS  Google Scholar 

  • Nwanna IEM, George GO, Olusoji IM (2006) Growth study on chrysene degraders isolated from polycyclic aromatic hydrocarbon polluted soils in Nigeria. Afr J Biotechnol 5:823–828

    CAS  Google Scholar 

  • Oberbremer A, Müller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–489

    CAS  Google Scholar 

  • Omokoko B, Jantges UK, Zimmermann M, Reiss M, Hartmeier W (2008) Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator. BMC Microbiol 8:197. doi:10.1186/1471-2180-8-197

    Google Scholar 

  • Onbasli D, Aslim B (2009) Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol 30:161–163

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381. doi:10.1016/S0168-6496(03)00092-8

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Ball WP, Schulin R, Semple KT, Wick LY (2007) Bioavailability of pollutants and soil remediation. J Environ Qual 36:1383–1384. doi:10.2134/jeq2007.0001

    CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005a) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142. doi:10.1016/j.tibtech.2005.01.001

    CAS  Google Scholar 

  • Paul D, Pandey G, Jain RK (2005b) Suicidal genetically engineered microorganisms for bioremediation: needs and perspectives. Bioessays 27:563–573

    CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955. doi:10.1111/j.1574-6976.2008.00127.x

    CAS  Google Scholar 

  • Pérez-Armendáriz B, Loera-Corral O, Fernández-Linares L, Esparza-García F, Rodríguez-Vázquez R (2004) Biostimulation of micro-organisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil. Lett Appl Microbiol 38:373–377. doi:10.1111/j.1472-765X.2004.01502.x

    Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol Rev 43:59–72

    CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    CAS  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AAM (2007) Bioavailability and degradation of phenanthrene in compost amended soil. Chemosphere 67:548–556. doi:10.1016/j.chemosphere.2006.09.058

    CAS  Google Scholar 

  • Rama R, Sigoillot JC, Chaplain V, Asther M, Jolivalt C, Mougin C (2001) Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycycl Aromat Compd 18:397–414

    CAS  Google Scholar 

  • Roling-Wilfred FM, Milner MG, Jones DM, Lee K, Daniel F, Swannell-Richard JP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548. doi:10.1128/AEM.68.11.5537-5548.2002

    CAS  Google Scholar 

  • Ron E, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252. doi:10.1016/S0958-1669(02)00316-6

    CAS  Google Scholar 

  • Rooney AP, Price NP, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87. doi:10.1111/j.1574-6968.2009.01581.x

    CAS  Google Scholar 

  • Saagua MC, Baeta-Hall L, Anselmo AM (2002) Microbiological characterization of a coke oven contaminated site and evaluation of its potential for bioremediation. World J Microbiol Biotechnol 18:841–845

    CAS  Google Scholar 

  • Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22:77–83

    CAS  Google Scholar 

  • Sack U, Gunther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33:269–277

    CAS  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63:3919–3925

    CAS  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1999) Degradation of phenanthrene and pyrene by Nematoloma frowardii. J Basic Microbiol 37:287–293

    Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphtol. Appl Microbiol Biotechnol 53:98–107

    CAS  Google Scholar 

  • Samanta SK, Bhushan B, Jain RK (2001) Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl Microbiol Biotechnol 55:627–631. doi:10.1007/s002530000553

    CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. doi:10.1016/S0167-7799(02)01943-1

    CAS  Google Scholar 

  • Schneegurt MA, Kulpa CF (1998) The application of molecular techniques in environmental biotechnology for monitoring microbial systems. Biotechnol Appl Biochem 27:73–79

    CAS  Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65. doi:10.1007/s00114-005-0079-5

    CAS  Google Scholar 

  • Semple KT, Morris AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818. doi:10.1046/j.1351-0754.2003.0564.x

    CAS  Google Scholar 

  • Siddiqi MA, Yuan ZX, Honey SA, Kumar S, Sikka HC (2002) Matabolism of PAHs and methyl-substituted PAHs by Sphingomonas paucimobilis strain EPA 505. Polycycl Aromat Compd 22:621–630

    CAS  Google Scholar 

  • Silva IS, Grossman M, Durranta LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeterior Biodegrad 63:224–229. doi:10.1016/j.ibiod.2008.09.008

    CAS  Google Scholar 

  • Singleton DR, Richardson SD, Aitken MD (2008) Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil. Biodegradation 19:577–587. doi:10.1007/s10532-007-9163-1

    CAS  Google Scholar 

  • Somtrakoon K, Suanjit S, Pokethitiyook P, Kruatrachue M, Lee H, Upatham S (2008) Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp VUN10013. Curr Microbiol 57:102–106. doi:10.1007/s00284-008-9157-1

    CAS  Google Scholar 

  • Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4:169–182

    Google Scholar 

  • Stark BC, Urgun-Demirtas M, Pagilla KR (2008) Role of hemoglobin in improving biodegradation of aromatic contaminants under hypoxic conditions. J Mol Microbiol Biotechnol 15:181–189

    CAS  Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359–369. doi:10.1007/s10532-006-9070-x

    CAS  Google Scholar 

  • Stokes JD, Paton GI, Semple KT (2006) Behaviour and assessment of bioavailability of organic contaminants in soils: relevance for risk assessment and remediation. Soil Use Manage 21:475–486

    Google Scholar 

  • Straube WL, Nestler CC, Hansen LD, Ringleberg D, Pritchard PH, Jones-Meehan J (2003) Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol 23:179–196

    CAS  Google Scholar 

  • Stroud JL, Paton GI, Semple KT (2007) Microbe–aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253. doi:10.1111/j.1365-2672.2007.03401.x

    CAS  Google Scholar 

  • Su D, Li PJ, Wang X, Stagnitti F, Xiong XZ (2008) Biodegradation of benzo[a]pyrene in soil by immobilized fungus. Environ Eng Sci 25:1181–1188. doi:10.1089/ees.2006.0171

    CAS  Google Scholar 

  • Surovtseva EG, Ivoilov VS, Belyaev SS (1999) Physiological and biochemical properties of Beijerinckia mobilis 1f Phn(+) capable of degrading polycyclic aromatic hydrocarbons. Microbiology 68:746–750

    CAS  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    CAS  Google Scholar 

  • Tao XQ, Lu GN, Dang Z, Yi XY, Yang C (2007) Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World J Microbiol Biotechnol 23:647–654

    CAS  Google Scholar 

  • Teira E, Lekunberri I, Gasol JM, Nieto-Cid M, Alvarez-Salgado XA, Figueiras FG (2007) Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ Microbiol 9:2551–2562. doi:10.1111/j.1462-2920.2007.01373.x

    CAS  Google Scholar 

  • Teng Y, Lou Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101:3437–3443. doi:10.1016/j.biortech.2009.12.088

    CAS  Google Scholar 

  • Toren A, Ron EZ, Bekerman R, Rosenberg E (2002) Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl Microbiol Biotechnol 59:580–584. doi:10.1007/s00253-002-1049-x

    CAS  Google Scholar 

  • Tortella GR, Diez MC, Duran N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212. doi:10.1080/10408410500304066

    CAS  Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1996) Degradation of fluoranthene in a soil matrix by indigenous and introduced bacteria. Biotechnol Lett 18:181–186

    CAS  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164. doi:10.1080/07388550600842794

    CAS  Google Scholar 

  • Valentin L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeterior Biodegrad 58:15–21. doi:10.1016/j.ibiod.2006.04.002

    CAS  Google Scholar 

  • Valentin L, Lu-Chau TA, Lopez C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp BOS55. Process Biochem 42:641–648. doi:10.1016/j.procbio.2006.11.011

    CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. doi:10.1016/S1382-6689(02)00126-6

    Google Scholar 

  • Van Herwijnen R, Wattiau P, Bastiaens L, Daal L, Jonker L, Springael D, Govers HAJ, Parson JR (2003) Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp LB126. Res Microbiol 154:199–206. doi:10.1016/S0923-2508(03)00039-1

    Google Scholar 

  • Vandyke MI, Couture P, Brauer M, Lee H, Trevors TJ (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078

    CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2005) Glycolipids produced by antarctic Nocardioides sp during growth on n-paraffin. Process Biochem 40:2387–2391. doi:10.1016/j.procbio.2004.09.018

    CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219. doi:10.1128/AEM.68.12.6210-6219.2002

    CAS  Google Scholar 

  • Vazquez-Nuñez E, Garcia-Gaytan A, Luna-Guido ML, Marsch R, Dendooven L (2009) Impact of moisture dynamic and sun light on anthracene removal from soil. Biodegradation. doi: 10.1007/s10532-008-9212-4

  • Verdin A, Sahraoui ALH, Fontaine J, Grandmougin-Ferjani A, Durand R (2006) Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza 16:397–405. doi:10.1007/s00572-006-0055-8

    CAS  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Wang Y, Lau PCK (1996) Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168:15–21

    CAS  Google Scholar 

  • Wang BJ, Lai QL, Cui ZS, Tan TF, Shao ZZ (2008a) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp P1. Environ Microbiol 10:1948–1963. doi:10.1111/j.1462-2920.2008.01611.x

    CAS  Google Scholar 

  • Wang X, Gong ZQ, Li PJ, Zhang LH, Hu XM (2008b) Degradation of pyrene and benzo(a) pyrene in contaminated soil by immobilized fungi. Environ Eng Sci 25:677–684. doi:10.1089/ees.2007.0075

    Google Scholar 

  • Ward BB (2002) How many species of prokaryotes are there? P Natl Acad Sci USA 99:10234–10236. doi:10.1073/pnas.162359199

    CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241. doi:10.1016/S0958-1669(00)00205-6

    CAS  Google Scholar 

  • Weaver M, Vedenyapina E, Kenerley CM (2005) Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil mesocosms. Appl Soil Ecol 29:125–134. doi:10.1016/j.apsoil.2004.11.006

    Google Scholar 

  • Weber WJ, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soil and sediments. 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26:1955–1962

    CAS  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    CAS  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58:202–209. doi:10.1007/s00253-001-0880-9

    CAS  Google Scholar 

  • Xu-Xiang Z, Shu-Pei C, Cheng-Jun Z, Shi-Lei S (2006) Microbial PAHs-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565

    Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 58:3276–3282

    Google Scholar 

  • Yesushalmi L, Guiot SR (1998) Kinetics of biodegradation of gasoline and its hydrocarbon constituents. Appl Microbiol Biotechnol 49:475–481

    Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    CAS  Google Scholar 

  • Zhao H, Chen W (2008) Chemical biotechnology: microbial solutions to global change. Curr Opin Biotechnol 19:541–543. doi:10.1016/j.copbio.2008.10.008

    CAS  Google Scholar 

  • Zhou HW, Luan TG, Zou F, Tam NFY (2008) Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment. J Hazard Mater 152:1179–1185. doi:10.1016/j.jhazmat.2007.07.116

    CAS  Google Scholar 

  • Zocca C, Di Gregorio S, Visentini F, Vallini G (2004) Biodiversity amongst cultivate polycyclic aromatic hydrocarbon-transforming bacteria isolated from an abandoned industrial site. FEMS Microbiol Lett 238:375–382. doi:10.1016/j.femsle.2004.07.055

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fernández-Luqueño.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Luqueño, F., Valenzuela-Encinas, C., Marsch, R. et al. Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res 18, 12–30 (2011). https://doi.org/10.1007/s11356-010-0371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0371-6

Keywords

Navigation