Skip to main content

Assisted Ventilation in the ICU: When and to Whom?

  • Chapter
  • First Online:
Practical Trends in Anesthesia and Intensive Care 2017

Abstract

Mechanical ventilation is a life-saving therapy for most critically ill patients [1]. We can distinguish between:

  • Controlled mechanical ventilation: during controlled mechanical ventilation, the patient has no role in the gas delivery process. Spontaneous respiratory muscle activity needs to be abolished.

  • Assisted mechanical ventilation: assisted mechanical ventilation involves a deep interaction between the patient and the ventilator machine. During this process, the patient’s spontaneous respiratory effort is recognized by the ventilator and assisted with positive pressure applied at the airway open. In this way, the work of breathing (WOB) is shared between the patient and the ventilator. Ventilator’s assistance needs to be synchronized with the patient’s inspiratory effort. Breathing pattern should ideally remain totally under the patient control. Respiratory rate (RR), tidal volume (VT), inspiratory time and inspiratory time/expiratory time ratio (I:E ratio) should be variable on a breath by breath basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059–63.

    Article  CAS  PubMed  Google Scholar 

  2. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22(1):67–72.

    Article  PubMed  Google Scholar 

  3. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.

    Article  CAS  PubMed  Google Scholar 

  4. Heunks LM, van der Hoeven JG. Clinical review: the ABC of weaning failure—a structured approach. Crit Care. 2010;14(6):245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Putensen C, Muders T, Varelmann D, Wrigge H. The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care. 2006;12(1):13–8.

    Article  PubMed  Google Scholar 

  6. Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80(5):475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Putensen C, Hering R, Wrigge H. Controlled versus assisted mechanical ventilation. Curr Opin Crit Care. 2002;8(1):51–7.

    Article  PubMed  Google Scholar 

  8. Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986–96.

    Article  CAS  PubMed  Google Scholar 

  9. Brochard L, Pluskwa F, Lemaire F. Improved efficacy of spontaneous breathing with inspiratory pressure support. Am Rev Respir Dis. 1987;136(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  10. Younes M. Proportional assist ventilation, a new approach to ventilatory support theory. Am Rev Respir Dis. 1992;145(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  11. Younes M, Puddy A, Roberts D, Light RB, Quesada A, Taylor K, Oppenheimer L, Cramp H. Proportional assist ventilation. Results of an initial clinical trial. Am Rev Respir Dis. 1992;145(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  12. Terzi N, Piquilloud L, Roze H, Mercat A, Lofaso F, Delisle S, Jolliet P, Sottiaux T, Tassaux D, Roesler J, et al. Clinical review: update on neurally adjusted ventilatory assist—report of a round-table conference. Crit Care. 2012;16(3):225.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37(2):263–71.

    Article  PubMed  Google Scholar 

  14. Brochard L. Pressure support level before extubation. Chest. 1994;106(6):1932.

    Article  CAS  PubMed  Google Scholar 

  15. Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. 1996;109(5):1320–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mead J. The control of respiratory frequency. Ann N Y Acad Sci. 1963;109:724–9.

    Article  CAS  PubMed  Google Scholar 

  17. Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, Dambrosio M, Cinnella G, Bruno F, Grasso S. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20(1):1.

    Article  PubMed  Google Scholar 

  18. Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, Cougot P, Minville V, Fourcade O, Georges B. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol. 2015;15:117.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22.

    Article  PubMed  Google Scholar 

  20. Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34(8):1477–86.

    Article  PubMed  Google Scholar 

  21. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M, Garcia-Esquirol O, Chacon E, Estruga A, Oliva JC, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41.

    Article  PubMed  Google Scholar 

  22. Ranieri VM, Grasso S, Fiore T, Giuliani R. Auto-positive end-expiratory pressure and dynamic hyperinflation. Clin Chest Med. 1996;17(3):379–94.

    Article  CAS  PubMed  Google Scholar 

  23. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–7.

    Article  PubMed  Google Scholar 

  24. Dres M, Rittayamai N, Brochard L. Monitoring patient-ventilator asynchrony. Curr Opin Crit Care. 2016;22(3):246–53.

    Article  PubMed  Google Scholar 

  25. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, Slutsky AS, Sinderby C, Qiu H. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16(4):R143.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, Sala V, Foti G, Pesenti A. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41(6):1483–91.

    Article  PubMed  Google Scholar 

  28. Grasso S, Marco Ranieri V. Proportional assist ventilation. Semin Respir Crit Care Med. 2000;21(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  29. Younes M, Brochard L, Grasso S, Kun J, Mancebo J, Ranieri M, Richard JC, Younes H. A method for monitoring and improving patient: ventilator interaction. Intensive Care Med. 2007;33(8):1337–46.

    Article  PubMed  Google Scholar 

  30. Younes M, Webster K, Kun J, Roberts D, Masiowski B. A method for measuring passive elastance during proportional assist ventilation. Am J Respir Crit Care Med. 2001;164(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  31. Younes M, Kun J, Masiowski B, Webster K, Roberts D. A method for noninvasive determination of inspiratory resistance during proportional assist ventilation. Am J Respir Crit Care Med. 2001;163(4):829–39.

    Article  CAS  PubMed  Google Scholar 

  32. Giannouli E, Webster K, Roberts D, Younes M. Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 1999;159(6):1716–25.

    Article  CAS  PubMed  Google Scholar 

  33. Meza S, Giannouli E, Younes M. Control of breathing during sleep assessed by proportional assist ventilation. J Appl Physiol. 1998;84(1):3–12.

    CAS  PubMed  Google Scholar 

  34. Ranieri VM, Grasso S, Mascia L, Martino S, Fiore T, Brienza A, Giuliani R. Effects of proportional assist ventilation on inspiratory muscle effort in patients with chronic obstructive pulmonary disease and acute respiratory failure. Anesthesiology. 1997;86(1):79–91.

    Article  CAS  PubMed  Google Scholar 

  35. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol (1985). 1988;65(1):309–17.

    CAS  Google Scholar 

  36. Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, Della Corte F, Navalesi P. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  37. Ruokonen E, Parviainen I, Jakob SM, Nunes S, Kaukonen M, Shepherd ST, Sarapohja T, Bratty JR, Takala J. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282–90.

    Article  CAS  PubMed  Google Scholar 

  38. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60.

    Article  CAS  PubMed  Google Scholar 

  39. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–44.

    Article  PubMed  Google Scholar 

  40. Slutsky AS. Ventilator-induced lung injury: from barotrauma to biotrauma. Respir Care. 2005;50(5):646–59.

    PubMed  Google Scholar 

  41. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40(5):1578–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Grasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Di Mussi, R., Grasso, S. (2018). Assisted Ventilation in the ICU: When and to Whom?. In: Chiumello, D. (eds) Practical Trends in Anesthesia and Intensive Care 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-61325-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61325-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61324-6

  • Online ISBN: 978-3-319-61325-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics