Skip to main content

Diabetes Mellitus and Exercise Physiology in the Presence of Diabetic Comorbidities

  • Chapter
  • First Online:
Diabetes and Exercise

Abstract

While uncomplicated type 2 diabetes mellitus (T2DM) is already associated with an impaired exercise capacity, the presence of other comorbidities appears to further worsen exercise capacity in T2DM. Common diabetic comorbidities such as hypertension, arterial stiffness, cardiovascular disease, systolic dysfunction, diastolic dysfunction, pulmonary disease, and diabetic nephropathy are all associated with worse exercise capacity in T2DM. Benefits of exercise training programs for those with T2DM and certain comorbidities (e.g., hypertension, increased arterial stiffness, or post-myocardial infarction) have been shown to include improved exercise capacity. Exercise has also been shown to improve other complications and comorbidities of diabetes including neuropathy, fatty liver, obstructive sleep apnea, and nephropathy, but the independent effect of these benefits on exercise capacity has not been defined. Further study is warranted to determine the specific benefits and risks of exercise training in subpopulations of T2DM such as those with T2DM and either congestive heart failure or microvascular complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowland TW, Martha PM Jr, Reiter EO, Cunningham LN. The influence of diabetes mellitus on cardiovascular function in children and adolescents. Int J Sports Med. 1992;13(5):431–5. Epub 1992/07/11.

    Article  CAS  PubMed  Google Scholar 

  2. Veves A, Saouaf R, Donaghue VM, Mullooly CA, Kistler JA, Giurini JM, et al. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes. 1997;46(11):1846–52. Epub 1997/11/14.

    Article  CAS  PubMed  Google Scholar 

  3. Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21. Epub 2009/11/17.

    Article  CAS  PubMed  Google Scholar 

  4. Kjaer M, Hollenbeck CB, Frey-Hewitt B, Galbo H, Haskell W, Reaven GM. Glucoregulation and hormonal responses to maximal exercise in non-insulin-dependent diabetes. J Appl Physiol. 1990;68(5):2067–74.

    CAS  PubMed  Google Scholar 

  5. Regensteiner JG, Bauer TA, Reusch JE, Brandenburg SL, Sippel JM, Vogelsong AM, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J Appl Physiol. 1998;85(1):310–7.

    CAS  PubMed  Google Scholar 

  6. Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR. Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc. 1995;27(6):875–81.

    Article  CAS  PubMed  Google Scholar 

  7. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord. 2013;14(1):77–86. Epub 2013/01/10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schneider SH, Khachadurian AK, Amorosa LF, Clemow L, Ruderman NB. Ten-year experience with an exercise-based outpatient life-style modification program in the treatment of diabetes mellitus. Diabetes Care. 1992;15(11):1800–10. Epub 1992/11/01.

    Article  CAS  PubMed  Google Scholar 

  9. Regensteiner JG. Type 2 diabetes mellitus and cardiovascular exercise performance. Rev Endocr Metab Disord. 2004;5(3):269–76. Epub 2004/06/24.

    Article  PubMed  Google Scholar 

  10. Poirier P, Garneau C, Bogaty P, Nadeau A, Marois L, Brochu C, et al. Impact of left ventricular diastolic dysfunction on maximal treadmill performance in normotensive subjects with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2000;85(4):473–7. Epub 2000/03/23.

    Article  CAS  PubMed  Google Scholar 

  11. Regensteiner JG, Bauer TA, Reusch JE, Quaife RA, Chen MY, Smith SC, et al. Cardiac dysfunction during exercise in uncomplicated type 2 diabetes. Med Sci Sports Exerc. 2009;41(5):977–84. Epub 2009/04/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens. 1993;11(3):309–17. Epub 1993/03/01.

    Google Scholar 

  13. Albright A, Franz M, Hornsby G, Kriska A, Marrero D, Ullrich I, et al. American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2000;32(7):1345–60. Epub 2000/07/27.

    Article  CAS  PubMed  Google Scholar 

  14. Geiss LS, Rolka DB, Engelgau MM. Elevated blood pressure among U.S. adults with diabetes, 1988–1994. Am J Prev Med. 2002;22(1):42–8. Epub 2002/01/05.

    Article  PubMed  Google Scholar 

  15. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–6. Epub 2000/05/16.

    Article  CAS  PubMed  Google Scholar 

  16. Raber W, Raffesberg W, Waldhausl W, Gasic S, Roden M. Exercise induces excessive normetanephrine responses in hypertensive diabetic patients. Eur J Clin Investig. 2003;33(6):480–7. Epub 2003/06/11.

    Article  CAS  Google Scholar 

  17. Babalola RO, Ajayi AA. A cross-sectional study of echocardiographic indices, treadmill exercise capacity and microvascular complications in Nigerian patients with hypertension associated with diabetes mellitus. Diabet Med J Br Diabet Assoc. 1992;9(10):899–903. Epub 1992/12/01.

    Article  CAS  Google Scholar 

  18. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(6 Pt 2):99S–105S. Epub 2000/08/02.

    Article  CAS  PubMed  Google Scholar 

  19. Esler M, Rumantir M, Kaye D, Lambert G. The sympathetic neurobiology of essential hypertension: disparate influences of obesity, stress, and noradrenaline transporter dysfunction? Am J Hypertens. 2001;14(6 Pt 2):139S–46S. Epub 2001/06/20.

    Article  CAS  PubMed  Google Scholar 

  20. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14(11 Pt 2):304S–9S. Epub 2001/11/28.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson RJ, Rodriguez-Iturbe B, Kang DH, Feig DI, Herrera-Acosta J. A unifying pathway for essential hypertension. Am J Hypertens. 2005;18(3):431–40. Epub 2005/03/31.

    Article  PubMed  Google Scholar 

  22. Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Annu Rev Physiol. 1983;45:139–53. Epub 1983/01/01.

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan L. Obesity, diabetes mellitus and physical activity – metabolic responses to physical training in adipose and muscle tissues. Ann Clin Res. 1982;14(Suppl 34):51–62. Epub 1982/01/01.

    PubMed  Google Scholar 

  24. Goldstein DS. Plasma norepinephrine during stress in essential hypertension. Hypertension. 1981;3(5):551–6. Epub 1981/09/01.

    Article  CAS  PubMed  Google Scholar 

  25. Goldstein DS. Plasma catecholamines and essential hypertension. An analytical review. Hypertension. 1983;5(1):86–99. Epub 1983/01/01.

    Article  CAS  PubMed  Google Scholar 

  26. Et-Taouil K, Safar M, Plante GE. Mechanisms and consequences of large artery rigidity. Can J Physiol Pharmacol. 2003;81(3):205–11. Epub 2003/05/08.

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–46. Epub 2013/11/19.

    Article  PubMed  Google Scholar 

  28. Mather KJ, Steinberg HO, Baron AD. Insulin resistance in the vasculature. J Clin Invest. 2013;123(3):1003–4. Epub 2013/03/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108(13):1592–8. Epub 2003/09/17.

    Article  PubMed  Google Scholar 

  30. Nichols W, O’Rourke M. Blood flow in arteries: theoretical, experimental and clinical principles. London: Arnold Publishers Ltd; 2005.

    Google Scholar 

  31. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72. Epub 2003/05/16.

    Article  CAS  PubMed  Google Scholar 

  32. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25. Epub 2006/02/16.

    Article  CAS  PubMed  Google Scholar 

  33. Funck KL, Laugesen E, Hoyem P, Fleischer J, Cichosz SL, Christiansen JS, et al. Low physical activity is associated with increased arterial stiffness in patients recently diagnosed with type 2 diabetes. Am J Hypertens. 2016;29(7):882–8. Epub 2015/12/31.

    Article  PubMed  Google Scholar 

  34. Kingwell BA. Large artery stiffness: implications for exercise capacity and cardiovascular risk. Proc Aust Physiol Pharmacol Soc. 2001;32(1):156–61.

    Google Scholar 

  35. Franzeck UK, Talke P, Bernstein EF, Golbranson FL, Fronek A. Transcutaneous PO2 measurements in health and peripheral arterial occlusive disease. Surgery. 1982;91(2):156–63. Epub 1982/02/01.

    CAS  PubMed  Google Scholar 

  36. Rooke TW, Osmundson PJ. The influence of age, sex, smoking, and diabetes on lower limb transcutaneous oxygen tension in patients with arterial occlusive disease. Arch Intern Med. 1990;150(1):129–32. Epub 1990/01/01.

    Article  CAS  PubMed  Google Scholar 

  37. Wyss CR, Matsen FA 3rd, Simmons CW, Burgess EM. Transcutaneous oxygen tension measurements on limbs of diabetic and nondiabetic patients with peripheral vascular disease. Surgery. 1984;95(3):339–46. Epub 1984/03/01.

    CAS  PubMed  Google Scholar 

  38. Kizu A, Koyama H, Tanaka S, Maeno T, Komatsu M, Fukumoto S, et al. Arterial wall stiffness is associated with peripheral circulation in patients with type 2 diabetes. Atherosclerosis. 2003;170(1):87–91. Epub 2003/09/06.

    Article  CAS  PubMed  Google Scholar 

  39. Kim G, Kim JH, Moon KW, Yoo KD, Kim CM, Moon D, et al. The relationships between the arterial stiffness index measured at the radial artery and left ventricular diastolic dysfunction in asymptomatic high risk patients without atherosclerotic cardiovascular disease. Int Heart J. 2016;57(1):73–9. Epub 2016/01/09.

    Article  CAS  PubMed  Google Scholar 

  40. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11). Epub 2015/11/26.

    Google Scholar 

  41. Matthys D, Craen M, De Wolf D, Vande Walle J, Verhaaren H. Reduced decrease of peripheral vascular resistance during exercise in young type I diabetic patients. Diabetes Care. 1996;19(11):1286–8. Epub 1996/11/01.

    Article  CAS  PubMed  Google Scholar 

  42. Newkumet KM, Goble MM, Young RB, Kaplowitz PB, Schieken RM. Altered blood pressure reactivity in adolescent diabetics. Pediatrics. 1994;93(4):616–21. Epub 1994/04/01.

    CAS  PubMed  Google Scholar 

  43. Rubler S, Arvan SB. Exercise testing in young asymptomatic diabetic patients. Angiology. 1976;27(9):539–48. Epub 1976/09/01.

    Article  CAS  PubMed  Google Scholar 

  44. Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol. 2001;4(2):73–80. Epub 2002/02/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503. Epub 2002/04/03.

    Article  PubMed  Google Scholar 

  46. Kelley GA, Kelley KS, Tran ZV. Walking and resting blood pressure in adults: a meta-analysis. Prev Med. 2001;33(2 Pt 1):120–7. Epub 2001/08/09.

    CAS  PubMed  Google Scholar 

  47. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67. Epub 2010/12/01.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Menard J, Payette H, Baillargeon JP, Maheux P, Lepage S, Tessier D, et al. Efficacy of intensive multitherapy for patients with type 2 diabetes mellitus: a randomized controlled trial. CMAJ Can Med Assoc J: J Assoc Med Can. 2005;173(12):1457–66. Epub 2005/11/19.

    Article  Google Scholar 

  49. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83. Epub 2007/03/17.

    Article  PubMed  Google Scholar 

  50. Balducci S, Zanuso S, Nicolucci A, De Feo P, Cavallo S, Cardelli P, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES). Arch Intern Med. 2010;170(20):1794–803. Epub 2010/11/10.

    Article  PubMed  Google Scholar 

  51. Kadoglou NP, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Group Epidemiol Prev Card Rehabil Exerc Physiol. 2007;14(6):837–43. Epub 2007/11/29.

    Google Scholar 

  52. Kim SH, Lee SJ, Kang ES, Kang S, Hur KY, Lee HJ, et al. Effects of lifestyle modification on metabolic parameters and carotid intima-media thickness in patients with type 2 diabetes mellitus. Metab Clin Exp. 2006;55(8):1053–9. Epub 2006/07/15.

    Article  CAS  PubMed  Google Scholar 

  53. Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Vuori I. Exercise training does not improve myocardial diastolic tissue velocities in type 2 diabetes. Cardiovasc Ultrasound. 2007;5:32. Epub 2007/09/28.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Parkkari J, et al. Effect of long-term endurance and strength training on metabolic control and arterial elasticity in patients with type 2 diabetes mellitus. Am J Cardiol. 2009;103(7):972–7. Epub 2009/03/31.

    Article  PubMed  Google Scholar 

  55. Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69. Epub 2007/09/19.

    Article  PubMed  Google Scholar 

  56. Wycherley TP, Brinkworth GD, Noakes M, Buckley JD, Clifton PM. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10(11):1062–73. Epub 2008/04/26.

    Article  CAS  PubMed  Google Scholar 

  57. Way KL, Keating SE, Baker MK, Chuter VH, Johnson NA. The effect of exercise on vascular function and stiffness in type 2 diabetes: a systematic review and meta-analysis. Curr Diabetes Rev. 2015. Epub 2015/08/19.

    Google Scholar 

  58. DeVallance E, Fournier S, Lemaster K, Moore C, Asano S, Bonner D, et al. The effects of resistance exercise training on arterial stiffness in metabolic syndrome. Eur J Appl Physiol. 2016;116(5):899–910. Epub 2016/03/05.

    Google Scholar 

  59. Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, et al. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol (1985). 2014;116(11):1396–404. Epub 2014/04/20.

    Google Scholar 

  60. Mustata S, Chan C, Lai V, Miller JA. Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients. J Am Soc Nephrol JASN. 2004;15(10):2713–8. Epub 2004/10/07.

    Article  PubMed  Google Scholar 

  61. Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Koyama H, et al. Short-term aerobic exercise improves arterial stiffness in type 2 diabetes. Diabetes Res Clin Pract. 2004;65(2):85–93. Epub 2004/06/30.

    Article  PubMed  Google Scholar 

  62. Jung JY, Min KW, Ahn HJ, Kwon HR, Lee JH, Park KS, et al. Arterial stiffness by aerobic exercise is related with aerobic capacity, physical activity energy expenditure and total fat but not with insulin sensitivity in obese female patients with type 2 diabetes. Diabetes Metab J. 2014;38(6):439–48. Epub 2014/12/30.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ferrier KE, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA. Aerobic exercise training does not modify large-artery compliance in isolated systolic hypertension. Hypertension. 2001;38(2):222–6. Epub 2001/08/18.

    Article  CAS  PubMed  Google Scholar 

  64. Baldi JC, Wilson GA, Wilson LC, Wilkins GT, Lamberts RR. The type 2 diabetic heart: its role in exercise intolerance and the challenge to find effective exercise interventions. Sports Med. 2016;46(11):1605–17. Epub 2016/04/24.

    Article  PubMed  Google Scholar 

  65. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602. Epub 1972/11/08.

    Article  CAS  PubMed  Google Scholar 

  66. Beljic T, Miric M. Improved metabolic control does not reverse left ventricular filling abnormalities in newly diagnosed non-insulin-dependent diabetes patients. Acta Diabetol. 1994;31(3):147–50. Epub 1994/09/01.

    Article  CAS  PubMed  Google Scholar 

  67. Di Bonito P, Cuomo S, Moio N, Sibilio G, Sabatini D, Quattrin S, et al. Diastolic dysfunction in patients with non-insulin-dependent diabetes mellitus of short duration. Diabet Med J Br Diabet Assoc. 1996;13(4):321–4. Epub 1996/04/01.

    Article  Google Scholar 

  68. Nicolino A, Longobardi G, Furgi G, Rossi M, Zoccolillo N, Ferrara N, et al. Left ventricular diastolic filling in diabetes mellitus with and without hypertension. Am J Hypertens. 1995;8(4 Pt 1):382–9. Epub 1995/04/01.

    Article  CAS  PubMed  Google Scholar 

  69. Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care. 2001;24(1):5–10. Epub 2001/02/24.

    Article  CAS  PubMed  Google Scholar 

  70. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202. Epub 2003/01/09.

    Article  PubMed  Google Scholar 

  71. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870–5. Epub 2004/03/31.

    Article  PubMed  Google Scholar 

  72. Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A. Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol. 2015;14:4. Epub 2015/01/15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Irace L, Iarussi D, Guadagno I, De Rimini ML, Lucca P, Spadaro P, et al. Left ventricular function and exercise tolerance in patients with type II diabetes mellitus. Clin Cardiol. 1998;21(8):567–71. Epub 1998/08/14.

    Article  CAS  PubMed  Google Scholar 

  74. Patil VC, Patil HV, Shah KB, Vasani JD, Shetty P. Diastolic dysfunction in asymptomatic type 2 diabetes mellitus with normal systolic function. J Cardiovasc Dis Res. 2011;2(4):213–22. Epub 2011/12/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salmasi AM, Rawlins S, Dancy M. Left ventricular hypertrophy and preclinical impaired glucose tolerance and diabetes mellitus contribute to abnormal left ventricular diastolic function in hypertensive patients. Blood Press Monit. 2005;10(5):231–8. Epub 2005/10/06.

    Article  PubMed  Google Scholar 

  76. Saraiva RM, Duarte DM, Duarte MP, Martins AF, Poltronieri AV, Ferreira ME, et al. Tissue Doppler imaging identifies asymptomatic normotensive diabetics with diastolic dysfunction and reduced exercise tolerance. Echocardiography. 2005;22(7):561–70. Epub 2005/08/03.

    Article  PubMed  Google Scholar 

  77. Schilling JD, Mann DL. Diabetic cardiomyopathy: bench to bedside. Heart Fail Clin. 2012;8(4):619–31. Epub 2012/09/25.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zahiti BF, Gorani DR, Gashi FB, Gjoka SB, Zahiti LB, Haxhiu BS, et al. Left ventricular diastolic dysfunction in asymptomatic type 2 diabetic patients: detection and evaluation by tissue Doppler imaging. Acta Inform Med AIM J Soc Med Inform Bosnia Herzegovina Cas Drustva Med Inform BiH. 2013;21(2):120–3. Epub 2013/09/17.

    Google Scholar 

  79. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660–71. Epub 2014/01/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Felicio JS, Koury CC, Carvalho CT, Neto JF, Mileo KB, Arbage TP, et al. Present insights on cardiomyopathy in diabetic patients. Curr Diabetes Rev. 2015. Epub 2015/09/15.

    Google Scholar 

  81. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149–66. Epub 2012/03/29.

    Article  PubMed  Google Scholar 

  82. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118(11):1808–29. Epub 2016/05/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Westermeier F, Riquelme JA, Pavez M, Garrido V, Diaz A, Verdejo HE, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol. 2016;7:125. Epub 2016/05/06.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bell DS. Diabetic cardiomyopathy. Diabetes Care. 2003;26(10):2949–51. Epub 2003/09/30.

    Article  PubMed  Google Scholar 

  85. Trost S, LeWinter M. Diabetic cardiomyopathy. Curr Treat Options Cardiovasc Med. 2001;3(6):481–92. Epub 2001/11/07.

    Article  PubMed  Google Scholar 

  86. Barmeyer A, Mullerleile K, Mortensen K, Meinertz T. Diastolic dysfunction in exercise and its role for exercise capacity. Heart Fail Rev. 2009;14(2):125–34. Epub 2008/09/02.

    Article  CAS  PubMed  Google Scholar 

  87. Kosmala W, Jellis CL, Marwick TH. Exercise limitation associated with asymptomatic left ventricular impairment: analogy with stage B heart failure. J Am Coll Cardiol. 2015;65(3):257–66. Epub 2014/12/24.

    Article  PubMed  Google Scholar 

  88. Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28(7):1643–8. Epub 2005/06/29.

    Article  PubMed  Google Scholar 

  89. Gurdal A, Kasikcioglu E, Yakal S, Bugra Z. Impact of diabetes and diastolic dysfunction on exercise capacity in normotensive patients without coronary artery disease. Diab Vasc Dis Res. 2015;12(3):181–8. Epub 2015/02/12.

    Article  PubMed  CAS  Google Scholar 

  90. Sasso FC, Carbonara O, Cozzolino D, Rambaldi P, Mansi L, Torella D, et al. Effects of insulin-glucose infusion on left ventricular function at rest and during dynamic exercise in healthy subjects and noninsulin dependent diabetic patients: a radionuclide ventriculographic study. J Am Coll Cardiol. 2000;36(1):219–26. Epub 2000/07/18.

    Article  CAS  PubMed  Google Scholar 

  91. Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82. Epub 2010/09/24.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 2015;123:100–6. Epub 2015/01/31.

    Article  CAS  PubMed  Google Scholar 

  93. Sacre JW, Jellis CL, Jenkins C, Haluska BA, Baumert M, Coombes JS, et al. A six-month exercise intervention in subclinical diabetic heart disease: effects on exercise capacity, autonomic and myocardial function. Metab Clin Exp. 2014;63(9):1104–14. Epub 2014/07/07.

    Article  CAS  PubMed  Google Scholar 

  94. Fournier SB, Donley DA, Bonner DE, Devallance E, Olfert IM, Chantler PD. Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study. Med Sci Sports Exerc. 2015;47(1):2–11. Epub 2014/05/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brassard P, Legault S, Garneau C, Bogaty P, Dumesnil JG, Poirier P. Normalization of diastolic dysfunction in type 2 diabetics after exercise training. Med Sci Sports Exerc. 2007;39(11):1896–901. Epub 2007/11/08.

    Article  PubMed  Google Scholar 

  96. Hare JL, Hordern MD, Leano R, Stanton T, Prins JB, Marwick TH. Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circ Heart Fail. 2011;4(4):441–9. Epub 2011/05/18.

    Article  PubMed  Google Scholar 

  97. Ofstad AP, Johansen OE, Gullestad L, Birkeland KI, Orvik E, Fagerland MW, et al. Neutral impact on systolic and diastolic cardiac function of 2 years of intensified multi-intervention in type 2 diabetes: the randomized controlled Asker and Baerum Cardiovascular Diabetes (ABCD) study. Am Heart J. 2014;168(3):280–8 e2. Epub 2014/09/01.

    Article  PubMed  Google Scholar 

  98. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59(1):56–66. Epub 2015/09/10.

    Article  CAS  PubMed  Google Scholar 

  99. Asrar UL, Haq M, Wong C, Levinger I, Srivastava PM, Sbaraglia M, Toia D, et al. Effect of exercise training on left ventricular remodeling in diabetic patients with diastolic dysfunction: rationale and design. Clin Med Insights Cardiol. 2014;8:23–8. Epub 2014/03/22.

    Google Scholar 

  100. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24(9):1614–9. Epub 2001/08/28.

    Article  CAS  PubMed  Google Scholar 

  101. Guazzi M, Brambilla R, Pontone G, Agostoni P, Guazzi MD. Effect of non-insulin-dependent diabetes mellitus on pulmonary function and exercise tolerance in chronic congestive heart failure. Am J Cardiol. 2002;89(2):191–7. Epub 2002/01/17.

    Article  PubMed  Google Scholar 

  102. Tibb AS, Ennezat PV, Chen JA, Haider A, Gundewar S, Cotarlan V, et al. Diabetes lowers aerobic capacity in heart failure. J Am Coll Cardiol. 2005;46(5):930–1. Epub 2005/09/06.

    Article  PubMed  Google Scholar 

  103. Ingle L, Reddy P, Clark AL, Cleland JG. Diabetes lowers six-minute walk test performance in heart failure. J Am Coll Cardiol. 2006;47(9):1909–10. Epub 2006/05/10.

    Article  PubMed  Google Scholar 

  104. Lee JC, Downing SE. Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine. Am J Phys. 1976;230(5):1360–5. Epub 1976/05/01.

    CAS  Google Scholar 

  105. Fisher BM, Gillen G, Dargie HJ, Inglis GC, Frier BM. The effects of insulin-induced hypoglycaemia on cardiovascular function in normal man: studies using radionuclide ventriculography. Diabetologia. 1987;30(11):841–5. Epub 1987/11/01.

    CAS  PubMed  Google Scholar 

  106. Guazzi M, Tumminello G, Matturri M, Guazzi MD. Insulin ameliorates exercise ventilatory efficiency and oxygen uptake in patients with heart failure-type 2 diabetes comorbidity. J Am Coll Cardiol. 2003;42(6):1044–50. Epub 2003/09/19.

    Article  CAS  PubMed  Google Scholar 

  107. Coch RW, Green JB. Current cardiovascular outcomes trials in type 2 diabetes: perspectives and insight. Nutr Metab Cardiovasc Dis NMCD. 2016. Epub 2016/07/06.

    Google Scholar 

  108. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502. Epub 2016/06/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Granger CB, Califf RM, Young S, Candela R, Samaha J, Worley S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol. 1993;21(4):920–5. Epub 1993/03/15.

    Article  CAS  PubMed  Google Scholar 

  110. Rytter L, Troelsen S, Beck-Nielsen H. Prevalence and mortality of acute myocardial infarction in patients with diabetes. Diabetes Care. 1985;8(3):230–4. Epub 1985/05/01.

    Article  CAS  PubMed  Google Scholar 

  111. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation. Circulation. 2002;106(6):666–71. Epub 2002/08/07.

    Article  PubMed  Google Scholar 

  112. Vanhees L, Fagard R, Thijs L, Amery A. Prognostic value of training-induced change in peak exercise capacity in patients with myocardial infarcts and patients with coronary bypass surgery. Am J Cardiol. 1995;76(14):1014–9. Epub 1995/11/15.

    Article  CAS  PubMed  Google Scholar 

  113. Church TS, LaMonte MJ, Barlow CE, Blair SN. Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Arch Intern Med. 2005;165(18):2114–20.

    Article  CAS  PubMed  Google Scholar 

  114. Koivula RW, Tornberg AB, Franks PW. Exercise and diabetes-related cardiovascular disease: systematic review of published evidence from observational studies and clinical trials. Curr Diab rep. 2013;13(3):372–80. Epub 2013/03/16.

    Article  CAS  PubMed  Google Scholar 

  115. Lyerly GW, Sui X, Lavie CJ, Church TS, Hand GA, Blair SN. The association between cardiorespiratory fitness and risk of all-cause mortality among women with impaired fasting glucose or undiagnosed diabetes mellitus. Mayo Clin Proc. 2009;84(9):780–6. Epub 2009/09/02.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11. Epub 2000/04/15.

    Article  CAS  PubMed  Google Scholar 

  117. Staimez LR, Weber MB, Gregg EW. The role of lifestyle change for prevention of cardiovascular disease in diabetes. Curr Atheroscler rep. 2014;16(12):460. Epub 2014/11/05.

    Article  PubMed  Google Scholar 

  118. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7):1–28. Epub 2015/06/28.

    Article  Google Scholar 

  119. Izawa K, Tanabe K, Omiya K, Yamada S, Yokoyama Y, Ishiguro T, et al. Impaired chronotropic response to exercise in acute myocardial infarction patients with type 2 diabetes mellitus. Jpn Heart J. 2003;44(2):187–99. Epub 2003/04/30.

    Article  PubMed  Google Scholar 

  120. Verges B, Patois-Verges B, Cohen M, Lucas B, Galland-Jos C, Casillas JM. Effects of cardiac rehabilitation on exercise capacity in type 2 diabetic patients with coronary artery disease. Diabet Med J Br Diabet Assoc. 2004;21(8):889–95. Epub 2004/07/24.

    Article  CAS  Google Scholar 

  121. Colucci WS, Ribeiro JP, Rocco MB, Quigg RJ, Creager MA, Marsh JD, et al. Impaired chronotropic response to exercise in patients with congestive heart failure. Role of postsynaptic beta-adrenergic desensitization. Circulation. 1989;80(2):314–23. Epub 1989/08/01.

    Article  CAS  PubMed  Google Scholar 

  122. Endo A, Kinugawa T, Ogino K, Kato M, Hamada T, Osaki S, et al. Cardiac and plasma catecholamine responses to exercise in patients with type 2 diabetes: prognostic implications for cardiac-cerebrovascular events. Am J med Sci. 2000;320(1):24–30. Epub 2000/07/26.

    Article  CAS  PubMed  Google Scholar 

  123. Fontes-Carvalho R, Sampaio F, Teixeira M, Rocha-Goncalves F, Gama V, Azevedo A, et al. Left ventricular diastolic dysfunction and E/E′ ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction. Clin Cardiol. 2015;38(4):222–9. Epub 2015/02/25.

    Article  PubMed  Google Scholar 

  124. Kim HJ, Joo MC, Noh SE, Kim JH. Long-term outcomes of cardiac rehabilitation in diabetic and non-diabetic patients with myocardial infarction. Ann Rehabil Med. 2015;39(6):853–62. Epub 2016/01/23.

    Article  PubMed  PubMed Central  Google Scholar 

  125. St Clair M, Mehta H, Sacrinty M, Johnson D, Robinson K. Effects of cardiac rehabilitation in diabetic patients: both cardiac and noncardiac factors determine improvement in exercise capacity. Clin Cardiol. 2014;37(4):233–8. Epub 2014/01/24.

    Article  PubMed  Google Scholar 

  126. Armstrong MJ, Martin BJ, Arena R, Hauer TL, Austford LD, Stone JA, et al. Patients with diabetes in cardiac rehabilitation: attendance and exercise capacity. Med Sci Sports Exerc. 2014;46(5):845–50. Epub 2013/10/16.

    Article  PubMed  Google Scholar 

  127. Verges B, Patois-Verges B, Iliou MC, Simoneau-Robin I, Bertrand JH, Feige JM, et al. Influence of glycemic control on gain in VO2 peak, in patients with type 2 diabetes enrolled in cardiac rehabilitation after an acute coronary syndrome. The prospective DARE study. BMC Cardiovasc Disord. 2015;15:64. Epub 2015/07/15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Byrkjeland R, Njerve IU, Anderssen S, Arnesen H, Seljeflot I, Solheim S. Effects of exercise training on HbA1c and VO2peak in patients with type 2 diabetes and coronary artery disease: a randomised clinical trial. Diab Vasc Dis Res. 2015;12(5):325–33. Epub 2015/06/21.

    Article  PubMed  Google Scholar 

  129. O’Connor GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstead EM, Paffenbarger RS Jr, et al. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation. 1989;80(2):234–44. Epub 1989/08/01.

    Article  PubMed  Google Scholar 

  130. Oldridge NB, Guyatt GH, Fischer ME, Rimm AA. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 1988;260(7):945–50. Epub 1988/08/19.

    Article  CAS  PubMed  Google Scholar 

  131. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47(5):921–9. Epub 2006/03/07.

    Article  PubMed  Google Scholar 

  132. Mukherjee D. Peripheral and cerebrovascular atherosclerotic disease in diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2009;23(3):335–45. Epub 2009/06/13.

    Article  PubMed  Google Scholar 

  133. Adler AI, Stevens RJ, Neil A, Stratton IM, Boulton AJ, Holman RR. UKPDS 59: hyperglycemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes. Diabetes Care. 2002;25(5):894–9. Epub 2002/04/30.

    Article  PubMed  Google Scholar 

  134. Dolan NC, Liu K, Criqui MH, Greenland P, Guralnik JM, Chan C, et al. Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care. 2002;25(1):113–20. Epub 2002/01/05.

    Article  PubMed  Google Scholar 

  135. Green S, Askew CD, Walker PJ. Effect of type 2 diabetes mellitus on exercise intolerance and the physiological responses to exercise in peripheral arterial disease. Diabetologia. 2007;50(4):859–66. Epub 2007/01/24.

    Article  CAS  PubMed  Google Scholar 

  136. Katzel LI, Sorkin JD, Powell CC, Gardner AW. Comorbidities and exercise capacity in older patients with intermittent claudication. Vasc Med. 2001;6(3):157–62. Epub 2002/01/16.

    Article  CAS  PubMed  Google Scholar 

  137. Oka RK, Sanders MG. The impact of type 2 diabetes and peripheral arterial disease on quality of life. J Vasc Nurs Off Publ Soc Peripher Vasc Nurs. 2005;23(2):61–6. quiz 7–8. Epub 2005/08/17.

    Google Scholar 

  138. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995;274(12):975–80. Epub 1995/09/27.

    Article  CAS  PubMed  Google Scholar 

  139. Parmenter BJ, Dieberg G, Smart NA. Exercise training for management of peripheral arterial disease: a systematic review and meta-analysis. Sports Med. 2015;45(2):231–44. Epub 2014/09/19.

    Article  PubMed  Google Scholar 

  140. Sanderson B, Askew C, Stewart I, Walker P, Gibbs H, Green S. Short-term effects of cycle and treadmill training on exercise tolerance in peripheral arterial disease. J Vasc Surg. 2006;44(1):119–27. Epub 2006/07/11.

    Article  PubMed  Google Scholar 

  141. Lyu X, Li S, Peng S, Cai H, Liu G, Ran X. Intensive walking exercise for lower extremity peripheral arterial disease: a systematic review and meta-analysis. J Diabetes. 2016;8(3):363–77. Epub 2015/05/06. meta.

    Article  PubMed  Google Scholar 

  142. Ekroth R, Dahllof AG, Gundevall B, Holm J, Schersten T. Physical training of patients with intermittent claudication: indications, methods, and results. Surgery. 1978;84(5):640–3. Epub 1978/11/01.

    CAS  PubMed  Google Scholar 

  143. Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial. Circulation. 2011;123(5):491–8. Epub 2011/01/26.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gardner AW, Montgomery PS, Parker DE. Optimal exercise program length for patients with claudication. J Vasc Surg. 2012;55(5):1346–54. Epub 2012/03/31.

    Article  PubMed  PubMed Central  Google Scholar 

  145. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301(2):165–74. Epub 2009/01/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McDermott MM, Liu K, Guralnik JM, Criqui MH, Spring B, Tian L, et al. Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA. 2013;310(1):57–65. Epub 2013/07/04.

    Article  CAS  PubMed  Google Scholar 

  147. Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80. Epub 2014/04/16.

    Article  PubMed  Google Scholar 

  148. Gong Q, Zhang P, Wang J, An Y, Gregg EW, Li H, et al. Changes in mortality in people with IGT before and after the onset of diabetes during the 23-year follow-up of the Da Qing Diabetes Prevention Study. Diabetes Care. 2016;39:1550–5. Epub 2016/07/15.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2(10):801–9. Epub 2014/08/16.

    Google Scholar 

  150. Steinberg H, Jacovino C, Kitabchi AE. Look inside Look AHEAD: why the glass is more than half-full. Curr Diab rep. 2014;14(7):500. Epub 2014/05/28.

    Article  PubMed  Google Scholar 

  151. Karjalainen JJ, Kiviniemi AM, Hautala AJ, Piira OP, Lepojarvi ES, Perkiomaki JS, et al. Effects of physical activity and exercise training on cardiovascular risk in coronary artery disease patients with and without type 2 diabetes. Diabetes Care. 2015;38(4):706–15. Epub 2015/01/17.

    PubMed  Google Scholar 

  152. Astrup AS, Nielsen FS, Rossing P, Ali S, Kastrup J, Smidt UM, et al. Predictors of mortality in patients with type 2 diabetes with or without diabetic nephropathy: a follow-up study. J Hypertens. 2007;25(12):2479–85. Epub 2007/11/07.

    Article  CAS  PubMed  Google Scholar 

  153. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 2001;24(10):1793–8. Epub 2001/09/28.

    Article  CAS  PubMed  Google Scholar 

  154. Gottsater A, Ahlgren AR, Taimour S, Sundkvist G. Decreased heart rate variability may predict the progression of carotid atherosclerosis in type 2 diabetes. Clin Auton Res Off J Clin Auton Res Soc. 2006;16(3):228–34. Epub 2006/06/10.

    Article  Google Scholar 

  155. Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26(6):303–12. Epub 2010/06/16.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Inv. 2013;4(1):4–18. Epub 2013/04/04.

    Article  CAS  Google Scholar 

  157. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301(15):1547–55. Epub 2009/04/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Keytsman C, Dendale P, Hansen D. Chronotropic incompetence during exercise in type 2 diabetes: aetiology, assessment methodology, prognostic impact and therapy. Sports Med. 2015;45(7):985–95. Epub 2015/04/04.

    Article  PubMed  Google Scholar 

  159. von Scholten BJ, Hansen CS, Hasbak P, Kjaer A, Rossing P, Hansen TW. Cardiac autonomic function is associated with the coronary microcirculatory function in type 2 diabetic patients. Diabetes. 2016;65:3129–38. Epub 2016/06/30.

    Article  CAS  Google Scholar 

  160. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3(12):1207–15. Epub 2010/12/18.

    Article  PubMed  Google Scholar 

  161. Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metab Clin Exp. 2013;62(5):609–21. Epub 2012/10/23.

    Article  CAS  PubMed  Google Scholar 

  162. Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovasc Res. 1997;34(1):206–14. Epub 1997/04/01.

    Article  CAS  PubMed  Google Scholar 

  163. Pagkalos M, Koutlianos N, Kouidi E, Pagkalos E, Mandroukas K, Deligiannis A. Heart rate variability modifications following exercise training in type 2 diabetic patients with definite cardiac autonomic neuropathy. Br J Sports Med. 2008;42(1):47–54. Epub 2007/05/29.

    Article  CAS  PubMed  Google Scholar 

  164. Morton RD, West DJ, Stephens JW, Bain SC, Bracken RM. Heart rate prescribed walking training improves cardiorespiratory fitness but not glycaemic control in people with type 2 diabetes. J Sports Sci. 2010;28(1):93–9. Epub 2010/04/15.

    Article  PubMed  Google Scholar 

  165. Goulopoulou S, Baynard T, Franklin RM, Fernhall B, Carhart R Jr, Weinstock R, et al. Exercise training improves cardiovascular autonomic modulation in response to glucose ingestion in obese adults with and without type 2 diabetes mellitus. Metab Clin Exp. 2010;59(6):901–10. Epub 2009/12/18.

    Article  CAS  PubMed  Google Scholar 

  166. Liu Y, Liu SX, Zheng F, Cai Y, Xie KL, Zhang WL. Cardiovascular autonomic neuropathy in patients with type 2 diabetes. J Diabetes Inv. 2016;7(4):615–21. Epub 2016/05/18.

    Article  CAS  Google Scholar 

  167. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32. Epub 2002/12/11.

    Article  PubMed  Google Scholar 

  168. Brown JB, Pedula KL, Summers KH. Diabetic retinopathy: contemporary prevalence in a well-controlled population. Diabetes Care. 2003;26(9):2637–42. Epub 2003/08/28.

    Article  PubMed  Google Scholar 

  169. Liu JE, Robbins DC, Palmieri V, Bella JN, Roman MJ, Fabsitz R, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the Strong Heart Study. J Am Coll Cardiol. 2003;41(11):2022–8. Epub 2003/06/12.

    Article  CAS  PubMed  Google Scholar 

  170. Jensen T, Richter EA, Feldt-Rasmussen B, Kelbaek H, Deckert T. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion. Br Med J (Clin Res Ed). 1988;296(6633):1352–4. Epub 1988/05/14.

    Article  CAS  Google Scholar 

  171. Kelbaek H, Jensen T, Feldt-Rasmussen B, Christensen NJ, Richter EA, Deckert T, et al. Impaired left-ventricular function in insulin-dependent diabetic patients with increased urinary albumin excretion. Scand J Clin Lab Invest. 1991;51(5):467–73. Epub 1991/09/01.

    Article  CAS  PubMed  Google Scholar 

  172. Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, Pyle L, et al. Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care. 2015;38(1):126–31. Epub 2014/11/22.

    Article  CAS  PubMed  Google Scholar 

  173. Lau AC, Lo MK, Leung GT, Choi FP, Yam LY, Wasserman K. Altered exercise gas exchange as related to microalbuminuria in type 2 diabetic patients. Chest. 2004;125(4):1292–8. Epub 2004/04/14.

    Article  PubMed  Google Scholar 

  174. Howden EJ, Weston K, Leano R, Sharman JE, Marwick TH, Isbel NM, et al. Cardiorespiratory fitness and cardiovascular burden in chronic kidney disease. J Sci Med Sports/Sports Med Aust. 2015;18(4):492–7. Epub 2014/08/16.

    Article  Google Scholar 

  175. Shiraishi FG, Stringuetta Belik F, Oliveira ESVR, Martin LC, Hueb JC, Goncalves Rde S, et al. Inflammation, diabetes, and chronic kidney disease: role of aerobic capacity. Exp Diabetes Res. 2012;2012:750286. Epub 2012/05/09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Zoccali C, Mallamaci F, Tripepi G. Traditional and emerging cardiovascular risk factors in end-stage renal disease. Kidney Int Suppl. 2003;85:S105–10. Epub 2003/05/20.

    Article  Google Scholar 

  177. Johansen KL. Physical functioning and exercise capacity in patients on dialysis. Adv Ren Replace Ther. 1999;6(2):141–8. Epub 1999/05/07.

    Article  CAS  PubMed  Google Scholar 

  178. Painter P, Moore G, Carlson L, Paul S, Myll J, Phillips W, et al. Effects of exercise training plus normalization of hematocrit on exercise capacity and health-related quality of life. Am J Kidney Dis Off J Natl Kidney Found. 2002;39(2):257–65. Epub 2002/02/13.

    Article  Google Scholar 

  179. Mayer G, Thum J, Cada EM, Stummvoll HK, Graf H. Working capacity is increased following recombinant human erythropoietin treatment. Kidney Int. 1988;34(4):525–8. Epub 1988/10/01.

    Article  CAS  PubMed  Google Scholar 

  180. Painter P, Hanson P, Messer-Rehak D, Zimmerman SW, Glass NR. Exercise tolerance changes following renal transplantation. Am J Kidney Dis Off J Natl Kidney Found. 1987;10(6):452–6. Epub 1987/12/01.

    Article  CAS  Google Scholar 

  181. Chan CT, Notarius CF, Merlocco AC, Floras JS. Improvement in exercise duration and capacity after conversion to nocturnal home haemodialysis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2007;22(11):3285–91. Epub 2007/06/28.

    Google Scholar 

  182. Painter P, Messer-Rehak D, Hanson P, Zimmerman SW, Glass NR. Exercise capacity in hemodialysis, CAPD, and renal transplant patients. Nephron. 1986;42(1):47–51. Epub 1986/01/01.

    Article  CAS  PubMed  Google Scholar 

  183. Watson EL, Greening NJ, Viana JL, Aulakh J, Bodicoat DH, Barratt J, et al. Progressive resistance exercise training in CKD: a feasibility study. Am J Kidney Dis Off J Natl Kidney Found. 2015;66(2):249–57. Epub 2014/12/24.

    Article  Google Scholar 

  184. Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, et al. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis Off J Natl Kidney Found. 2014;64(2):222–9. Epub 2014/04/30.

    Article  Google Scholar 

  185. Greenwood SA, Koufaki P, Mercer TH, MacLaughlin HL, Rush R, Lindup H, et al. Effect of exercise training on estimated GFR, vascular health, and cardiorespiratory fitness in patients with CKD: a pilot randomized controlled trial. Am J Kidney Dis Off J Natl Kidney Found. 2015;65(3):425–34. Epub 2014/09/23.

    Article  Google Scholar 

  186. Estacio RO, Regensteiner JG, Wolfel EE, Jeffers B, Dickenson M, Schrier RW. The association between diabetic complications and exercise capacity in NIDDM patients. Diabetes Care. 1998;21(2):291–5. Epub 1998/04/16.

    Article  CAS  PubMed  Google Scholar 

  187. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8. Epub 2006/05/30.

    Article  PubMed  Google Scholar 

  188. Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care. 2016;39(Suppl 1):S4–5. Epub 2015/12/24.

    Google Scholar 

  189. Professional practice committee for the standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl 1):S107–8. Epub 2015/12/24.

    Google Scholar 

  190. Singleton JR, Marcus RL, Jackson JE, M KL, Graham TE, Smith AG. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014;1(10):844–9. Epub 2014/12/11.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Singleton JR, Smith AG, Marcus RL. Exercise as therapy for diabetic and prediabetic neuropathy. Curr Diab rep. 2015;15(12):120. Epub 2015/11/06.

    Article  PubMed  Google Scholar 

  192. Streckmann F, Zopf EM, Lehmann HC, May K, Rizza J, Zimmer P, et al. Exercise intervention studies in patients with peripheral neuropathy: a systematic review. Sports Med. 2014;44(9):1289–304. Epub 2014/06/15.

    Google Scholar 

  193. Mueller MJ, Tuttle LJ, Lemaster JW, Strube MJ, McGill JB, Hastings MK, et al. Weight-bearing versus nonweight-bearing exercise for persons with diabetes and peripheral neuropathy: a randomized controlled trial. Arch Phys Med Rehabil. 2013;94(5):829–38. Epub 2013/01/02.

    Article  PubMed  Google Scholar 

  194. Balducci S, Iacobellis G, Parisi L, Di Biase N, Calandriello E, Leonetti F, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complicat. 2006;20(4):216–23. Epub 2006/06/27.

    Article  PubMed  Google Scholar 

  195. Kluding PM, Pasnoor M, Singh R, Jernigan S, Farmer K, Rucker J, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complicat. 2012;26(5):424–9. Epub 2012/06/22.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hoogenberg K, Dullaart RP. Abnormal plasma noradrenaline response and exercise induced albuminuria in type 1 (insulin-dependent) diabetes mellitus. Scand J Clin Lab Invest. 1992;52(8):803–11. Epub 1992/12/01.

    Article  CAS  PubMed  Google Scholar 

  197. Poulsen PL, Ebbehoj E, Mogensen CE. Lisinopril reduces albuminuria during exercise in low grade microalbuminuric type 1 diabetic patients: a double blind randomized study. J Intern Med. 2001;249(5):433–40. Epub 2001/05/15.

    Article  CAS  PubMed  Google Scholar 

  198. Romanelli G, Giustina A, Cravarezza P, Caldonazzo A, Agabiti-Rosei E, Giustina G. Albuminuria induced by exercise in hypertensive type I and type II diabetic patients: a randomised, double-blind study on the effects of acute administration of captopril and nifedipine. J Hum Hypertens. 1991;5(3):167–73. Epub 1991/06/01.

    CAS  PubMed  Google Scholar 

  199. Tuominen JA, Ebeling P, Koivisto VA. Long-term lisinopril therapy reduces exercise-induced albuminuria in normoalbuminuric normotensive IDDM patients. Diabetes Care. 1998;21(8):1345–8. Epub 1998/08/14.

    Article  CAS  PubMed  Google Scholar 

  200. Viberti GC, Jarrett RJ, McCartney M, Keen H. Increased glomerular permeability to albumin induced by exercise in diabetic subjects. Diabetologia. 1978;14(5):293–300. Epub 1978/05/01.

    Article  CAS  PubMed  Google Scholar 

  201. Huttunen NP, Kaar M, Puukka R, Akerblom HK. Exercise-induced proteinuria in children and adolescents with type 1 (insulin dependent) diabetes. Diabetologia. 1981;21(5):495–7. Epub 1981/11/01.

    Article  CAS  PubMed  Google Scholar 

  202. Lane JT, Ford TC, Larson LR, Chambers WA, Lane PH. Acute effects of different intensities of exercise in normoalbuminuric/normotensive patients with type 1 diabetes. Diabetes Care. 2004;27(1):28–32. Epub 2003/12/25.

    Article  PubMed  Google Scholar 

  203. Cohen JA, Jeffers BW, Faldut D, Marcoux M, Schrier RW. Risks for sensorimotor peripheral neuropathy and autonomic neuropathy in non-insulin-dependent diabetes mellitus (NIDDM). Muscle Nerve. 1998;21(1):72–80. Epub 1998/01/14.

    Article  CAS  PubMed  Google Scholar 

  204. Parving HH, Hommel E, Mathiesen E, Skott P, Edsberg B, Bahnsen M, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J (Clin Res Ed). 1988;296(6616):156–60. Epub 1988/01/16.

    Article  CAS  Google Scholar 

  205. Kart-Koseoglu H, Yucel AE, Niron EA, Koseoglu H, Isiklar I, Ozdemir FN. Osteoarthritis in hemodialysis patients: relationships with bone mineral density and other clinical and laboratory parameters. Rheumatol Int. 2005;25(4):270–5. Epub 2004/03/05.

    Article  PubMed  Google Scholar 

  206. Kay J, Bardin T. Osteoarticular disorders of renal origin: disease-related and iatrogenic. Baillieres Best Pract Res Clin Rheumatol. 2000;14(2):285–305. Epub 2000/08/05.

    Article  CAS  PubMed  Google Scholar 

  207. Naidich JB, Mossey RT, McHeffey-Atkinson B, Karmel MI, Bluestone PA, Mailloux LU, et al. Spondyloarthropathy from long-term hemodialysis. Radiology. 1988;167(3):761–4. Epub 1988/06/01.

    Article  CAS  PubMed  Google Scholar 

  208. Evans N, Forsyth E. End-stage renal disease in people with type 2 diabetes: systemic manifestations and exercise implications. Phys Ther. 2004;84(5):454–63. Epub 2004/04/29.

    PubMed  Google Scholar 

  209. Davison SN. Pain in hemodialysis patients: prevalence, cause, severity, and management. Am J Kidney Dis Off J Natl Kidney Found. 2003;42(6):1239–47. Epub 2003/12/05.

    Article  Google Scholar 

  210. Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med J Br Diabet Assoc. 2010;27(9):977–87. Epub 2010/08/21.

    Article  CAS  Google Scholar 

  211. Klein OL, Jones M, Lee J, Collard HR, Smith LJ. Reduced lung diffusion capacity in type 2 diabetes is independent of heart failure. Diabetes Res Clin Pract. 2012;96(3):e73–5. Epub 2012/03/23.

    Article  PubMed  Google Scholar 

  212. Klein OL, Kalhan R, Williams MV, Tipping M, Lee J, Peng J, et al. Lung spirometry parameters and diffusion capacity are decreased in patients with type 2 diabetes. Diabet Med J Br Diabet Assoc. 2012;29(2):212–9. Epub 2011/07/28.

    Article  CAS  Google Scholar 

  213. Fontaine-Delaruelle C, Viart-Ferber C, Luyton C, Couraud S. Lung function in patients with diabetes mellitus. Rev Pneumol Clin. 2016;72(1):10–6. Epub 2015/07/22. Fonction pulmonaire du patient diabetique.

    Article  CAS  PubMed  Google Scholar 

  214. Kinney GL, Black-Shinn JL, Wan ES, Make B, Regan E, Lutz S, et al. Pulmonary function reduction in diabetes with and without chronic obstructive pulmonary disease. Diabetes Care. 2014;37(2):389–95. Epub 2013/09/13.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kim HK, Kim CH, Jung YJ, Bae SJ, Choe J, Park JY, et al. Association of restrictive ventilatory dysfunction with insulin resistance and type 2 diabetes in Koreans. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2011;119(1):47–52. Epub 2011/01/20.

    Article  CAS  Google Scholar 

  216. Buchmann N, Norman K, Steinhagen-Thiessen E, Demuth I, Eckardt R. Lung function in elderly subjects with metabolic syndrome and type II diabetes: data from the Berlin Aging Study II. Z Gerontol Geriatr. 2015. Epub 2015/10/29. Lungenfunktion bei alteren Probanden mit metabolischem Syndrom und Typ II Diabetes : Ergebnisse der Berliner Altersstudie II.

    Google Scholar 

  217. Aparna. Pulmonary function tests in type 2 diabetics and non-diabetic people -a comparative study. J Clin Diagn Res JCDR. 2013;7(8):1606–8. Epub 2013/10/03.

    CAS  PubMed  Google Scholar 

  218. Shah SH, Sonawane P, Nahar P, Vaidya S, Salvi S. Pulmonary function tests in type 2 diabetes mellitus and their association with glycemic control and duration of the disease. Lung India Off Organ Indian Chest Soc. 2013;30(2):108–12. Epub 2013/06/07.

    Article  Google Scholar 

  219. Baffi CW, Wood L, Winnica D, Strollo PJ Jr, Gladwin MT, Que LG, et al. Metabolic syndrome and the lung. Chest. 2016;149(6):1525–34. Epub 2016/02/03.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Anandhalakshmi S, Manikandan, Ganeshkumar, Ramachandran. Alveolar gas exchange and pulmonary functions in patients with Typ2 II diabetes. J Clin Diagn Res. 2013;7(9):1874–7.

    Google Scholar 

  221. Hsia CC, Raskin P. The diabetic lung: relevance of alveolar microangiopathy for the use of inhaled insulin. Am J Med. 2005;118(3):205–11. Epub 2005/03/05.

    Article  CAS  PubMed  Google Scholar 

  222. Shafiee G, Khamseh ME, Rezaei N, Aghili R, Malek M. Alteration of pulmonary function in diabetic nephropathy. J Diabetes Metab Disord. 2013;12(1):15. Epub 2013/04/27.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Durdik P, Vojtkova J, Michnova Z, Turcan T, Sujanska A, Kuchta M, et al. Pulmonary function tests in type 1 diabetes adolescents with diabetic cardiovascular autonomic neuropathy. J Diabetes Complicat. 2016;30(1):79–84. Epub 2015/11/26.

    Article  PubMed  Google Scholar 

  224. Kaminski DM, Schaan BD, da Silva AM, Soares PP, Plentz RD, Dall’Ago P. Inspiratory muscle weakness is associated with autonomic cardiovascular dysfunction in patients with type 2 diabetes mellitus. Clin Auton Res Off J Clin Auton Res Soc. 2011;21(1):29–35. Epub 2010/11/06.

    Article  Google Scholar 

  225. Kitahara Y, Hattori N, Yokoyama A, Yamane K, Sekikawa K, Inamizu T, et al. The influence of lung function on exercise capacity in patients with type 2 diabetes. Hiroshima J Med Sci. 2010;59(1):7–13. Epub 2010/06/04.

    PubMed  Google Scholar 

  226. Correa AP, Ribeiro JP, Balzan FM, Mundstock L, Ferlin EL, Moraes RS. Inspiratory muscle training in type 2 diabetes with inspiratory muscle weakness. Med Sci Sports Exerc. 2011;43(7):1135–41. Epub 2011/01/05.

    Article  PubMed  Google Scholar 

  227. Tunkamnerdthai O, Auvichayapat P, Donsom M, Leelayuwat N. Improvement of pulmonary function with arm swing exercise in patients with type 2 diabetes. J Phys Ther Sci. 2015;27(3):649–54. Epub 2015/05/02.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306(17):1018–22. Epub 1982/04/29.

    Article  CAS  PubMed  Google Scholar 

  229. Strongin LG, Korneva KG, Panova EI. Disturbances of cardiac rhythm and metabolic control in patients with type-2 diabetes. Kardiologiia. 2005;45(11):46–9. Epub 2005/12/15.

    CAS  PubMed  Google Scholar 

  230. Douketis JD, Arneklev K, Goldhaber SZ, Spandorfer J, Halperin F, Horrow J. Comparison of bleeding in patients with nonvalvular atrial fibrillation treated with ximelagatran or warfarin: assessment of incidence, case-fatality rate, time course and sites of bleeding, and risk factors for bleeding. Arch Intern Med. 2006;166(8):853–9. Epub 2006/04/26.

    Article  CAS  PubMed  Google Scholar 

  231. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34. Epub 1998/07/23.

    Article  CAS  PubMed  Google Scholar 

  232. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59(1):8–13. Epub 1979/01/01.

    Article  CAS  PubMed  Google Scholar 

  233. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44. Epub 1993/02/01.

    Article  CAS  PubMed  Google Scholar 

  234. Guazzi M, Belletti S, Bianco E, Lenatti L, Guazzi MD. Endothelial dysfunction and exercise performance in lone atrial fibrillation or associated with hypertension or diabetes: different results with cardioversion. Am J Physiol Heart Circ Physiol. 2006;291(2):H921–8. Epub 2006/02/08.

    Article  CAS  PubMed  Google Scholar 

  235. Sung KC, Ryu S, Lee JY, Kim JY, Wild SH, Byrne CD. Development of new fatty liver, or resolution of existing fatty liver, over 5 years of follow up: effect of exercise. J Hepatol. 2016;65:791–7. Epub 2016/06/04.

    Article  CAS  PubMed  Google Scholar 

  236. Cuthbertson DJ, Shojaee-Moradie F, Sprung VS, Jones H, Pugh CJ, Richardson P, et al. Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease. Clin Sci (Lond). 2016;130(2):93–104. Epub 2015/10/02.

    Article  CAS  Google Scholar 

  237. Keating SE, Hackett DA, Parker HM, O’Connor HT, Gerofi JA, Sainsbury A, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol. 2015;63(1):174–82. Epub 2015/04/13.

    Article  PubMed  Google Scholar 

  238. Aiello KD, Caughey WG, Nelluri B, Sharma A, Mookadam F, Mookadam M. Effect of exercise training on sleep apnea: a systematic review and meta-analysis. Respir Med. 2016;116:85–92. Epub 2016/06/15.

    Article  PubMed  Google Scholar 

  239. Albright AL, Mahan JD, Ward KM, Sherman WM, Roehrig KL, Kirby TE. Diabetic nephropathy in an aerobically trained rat model of diabetes. Med Sci Sports Exerc. 1995;27(9):1270–7. Epub 1995/09/01.

    Article  CAS  PubMed  Google Scholar 

  240. Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27(6):713–21. Epub 2006/02/25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene E. Schauer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schauer, I.E., Huebschmann, A.G., Regensteiner, J.G. (2018). Diabetes Mellitus and Exercise Physiology in the Presence of Diabetic Comorbidities. In: Reusch, MD, J., Regensteiner, PhD, MA, BA, J., Stewart, Ed.D., FAHA, MAACVPR, FACSM , K., Veves, MD, DSc, A. (eds) Diabetes and Exercise. Contemporary Diabetes. Humana Press, Cham. https://doi.org/10.1007/978-3-319-61013-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61013-9_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-61011-5

  • Online ISBN: 978-3-319-61013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics