Skip to main content

Advertisement

Log in

Chronotropic Incompetence During Exercise in Type 2 Diabetes: Aetiology, Assessment Methodology, Prognostic Impact and Therapy

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

During incremental exercise tests, chronotropic incompetence (CI), which is the inability of the heart rate (HR) to rise in proportion to an increase in metabolic demand, is often observed in patients with type 2 diabetes mellitus (T2DM). Despite the fact that CI is associated with exercise intolerance and elevated risks of development of cardiovascular disease and premature death, this clinical anomaly is often ignored or overlooked by clinicians and physiologists. CI is, however, a significant clinical abnormality that deserves further attention, examination and treatment. The aetiology of CI in T2DM remains poorly understood and is complex. Certain T2DM-related co-morbidities or physiological anomalies may contribute to development of CI, such as altered blood catecholamine and/or potassium levels during exercise, structural myocardial abnormalities, ventricular and/or arterial stiffness, impaired baroreflex sensitivity and cardiovascular autonomic neuropathy. Clinicians should thus be aware of the potential presence of yet undetected anomalies or diseases in T2DM patients who experience CI during exercise testing. However, an effective treatment for CI in T2DM is yet to be developed. Exercise training programmes seem to be the only potentially effective and feasible interventions for partial restoration of the chronotropic response in T2DM, but it remains poorly understood how these interventions lead to restoration of the chronotropic response. Studies are thus warranted to elucidate the aetiology of CI and develop an effective treatment for CI in T2DM. In particular, the impact of (different) exercise interventions on CI in T2DM deserves greater attention in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Praet SF, van Loon LJ. Exercise therapy in type 2 diabetes. Acta Diabetol. 2009;46(4):263–78.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    Article  CAS  Google Scholar 

  3. Madden KM. Evidence for the benefit of exercise therapy in patients with type 2 diabetes. Diabetes Metab Syndr Obes. 2013;6:233–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord. 2013;14(1):77–86.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Stewart KJ. Exercise training: can it improve cardiovascular health in patients with type 2 diabetes? Br J Sports Med. 2004;38(3):250–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40.

    Article  CAS  PubMed  Google Scholar 

  7. Portero McLellan KC, Wyne K, Villagomez ET, et al. Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus. Ther Clin Risk Manag. 2014;10:173–88.

    PubMed Central  PubMed  Google Scholar 

  8. Price HC, Clarke PM, Gray AM, et al. Life expectancy in individuals with type 2 diabetes: implications for annuities. Med Decis Making. 2010;30(3):409–14.

    Article  PubMed  Google Scholar 

  9. van Dijk JW, Tummers K, Stehouwer CD, et al. Exercise therapy in type 2 diabetes: is daily exercise required to optimize glycemic control? Diabetes Care. 2012;35(5):948–54.

  10. Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–31.

    Article  PubMed  Google Scholar 

  11. McAuley PA, Myers JN, Abella JP, et al. Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes. Diabetes Care. 2007;30(6):1539–43.

    Article  PubMed  Google Scholar 

  12. Nylen ES, Kokkinos P, Myers J, et al. Prognostic effect of exercise capacity on mortality in older adults with diabetes mellitus. J Am Geriatr Soc. 2010;58(10):1850–4.

    Article  PubMed  Google Scholar 

  13. Hansen D, Dendale P, Jonkers RA, et al. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients. Diabetologia. 2009;52(9):1789–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chipkin SR, Klugh SA, Chasan-Taber L. Exercise and diabetes. Cardiol Clin. 2001;19(3):489–505.

    Article  CAS  PubMed  Google Scholar 

  16. Jellis CL, Stanton T, Leano R, et al. Usefulness of at rest and exercise hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol. 2011;107(4):615–21.

    Article  PubMed  Google Scholar 

  17. Hansen D, Dendale P. Modifiable predictors of chronotropic incompetence in male patients with type 2 diabetes. J Cardiopulm Rehabil Prev. 2014;34(3):202–7.

    Article  PubMed  Google Scholar 

  18. Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123(9):1010–20.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Corbelli R, Masterson M, Wilkoff BL. Chronotropic response to exercise in patients with atrial fibrillation. Pacing Clin Electrophysiol. 1990;13(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  20. Coyne JC, Rohrbaugh MJ, Shoham V, et al. Prognostic importance of marital quality for survival of congestive heart failure. Am J Cardiol. 2001;88(5):526–9.

    Article  CAS  PubMed  Google Scholar 

  21. Gwinn N, Leman R, Kratz J, et al. Chronotropic incompetence: a common and progressive finding in pacemaker patients. Am Heart J. 1992;123(5):1216–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lamas GA, Knight JD, Sweeney MO, et al. Impact of rate-modulated pacing on quality of life and exercise capacity—evidence from the Advanced Elements of Pacing Randomized Controlled Trial (ADEPT). Heart Rhythm. 2007;4(9):1125–32.

    Article  PubMed  Google Scholar 

  23. Dresing TJ, Blackstone EH, Pashkow FJ et al. Usefulness of impaired chronotropic response to exercise as a predictor of mortality, independent of the severity of coronary artery disease. Am J Cardiol. 2000;86(6):602–9.

  24. Elhendy A, van Domburg RT, van Bax JJ, et al. The functional significance of chronotropic incompetence during dobutamine stress test. Heart. 1999;81(4):398–403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6.

    Article  CAS  PubMed  Google Scholar 

  26. Nes BM, Janszky I, Wisloff U, et al. Age-predicted maximal heart rate in healthy subjects: the HUNT Fitness Study. Scand J Med Sci Sports. 2013;23(6):697–704.

    Article  CAS  PubMed  Google Scholar 

  27. Diaz A, Bourassa MG, Guertin MC, et al. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J. 2005;26(10):967–74.

    Article  PubMed  Google Scholar 

  28. Okin PM, Lauer MS, Kligfield P. Chronotropic response to exercise: improved performance of ST-segment depression criteria after adjustment for heart rate reserve. Circulation. 1996;94(12):3226–31.

    Article  CAS  PubMed  Google Scholar 

  29. Huebschmann AG, Reis EN, Emsermann C, et al. Women with type 2 diabetes perceive harder effort during exercise than nondiabetic women. Appl Physiol Nutr Metab. 2009;34(5):851–7.

    Article  PubMed  Google Scholar 

  30. Wilkoff BL, Miller RE. Exercise testing for chronotropic assessment. Cardiol Clin. 1992;10(4):705–17.

    CAS  PubMed  Google Scholar 

  31. Melzer C, Witte J, Reibis R, et al. Predictors of chronotropic incompetence in the pacemaker patient population. Europace. 2006;8(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  32. Brubaker PH, Kitzman DW. Prevalence and management of chronotropic incompetence in heart failure. Curr Cardiol Rep. 2007;9(3):229–35.

    Article  PubMed  Google Scholar 

  33. Sims DB, Mignatti A, Colombo PC, et al. Rate responsive pacing using cardiac resynchronization therapy in patients with chronotropic incompetence and chronic heart failure. Europace. 2011;13(10):1459–63.

    Article  PubMed  Google Scholar 

  34. Lauer MS. Chronotropic incompetence: ready for prime time. J Am CollCardiol. 2004;44(2):431–2.

    Article  Google Scholar 

  35. Keteyian SJ, Brawner CA, Schairer JR, et al. Effects of exercise training on chronotropic incompetence in patients with heart failure. Am Heart J. 1999;138(2 Pt 1):233–40.

    Article  CAS  PubMed  Google Scholar 

  36. Matsukawa K. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol. 2012;97(1):20–8.

    Article  PubMed  Google Scholar 

  37. Nobrega AC, O’Leary D, Silva BM, et al. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int. 2014;2014:478965.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kiviniemi AM, Tulppo MP, Hautala AJ, et al. Long-term outcome of patients with chronotropic incompetence after an acute myocardial infarction. Ann Med. 2011;43(1):33–9.

    Article  PubMed  Google Scholar 

  39. De Sutter J, Van de Veire N, Elegeert I. Chronotropic incompetence: are the carotid arteries to blame? Eur Heart J. 2006;27(8):897–8.

    Article  PubMed  Google Scholar 

  40. Narkiewicz K, Pesek CA, van de Borne PJ, et al. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999;100(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  41. Choi HM, Stebbins CL, Lee OT, et al. Augmentation of the exercise pressor reflex in prehypertension: roles of the muscle metaboreflex and mechanoreflex. Appl Physiol Nutr Metab. 2013;38(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  42. Schmid A, Huonker M, Barturen JM, et al. Catecholamines, heart rate, and oxygen uptake during exercise in persons with spinal cord injury. J Appl Physiol (1985). 1998;85(2):635–41.

  43. Peinado AB, Rojo JJ, Calderon FJ, et al. Responses to increasing exercise upon reaching the anaerobic threshold, and their control by the central nervous system. BMC Sports Sci Med Rehabil. 2014;6:17.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a ‘whip-brake’ system of the endocrine heart. J Exp Biol. 2010;213(Pt 18):3081–103.

    Article  CAS  PubMed  Google Scholar 

  45. Jae SY, Fernhall B, Heffernan KS, et al. Chronotropic response to exercise testing is associated with carotid atherosclerosis in healthy middle-aged men. Eur Heart J. 2006;27(8):954–9.

    Article  PubMed  Google Scholar 

  46. Fukuma N, Oikawa K, Aisu N, et al. Impaired baroreflex as a cause of chronotropic incompetence during exercise via autonomic mechanism in patients with heart disease. Int J Cardiol. 2004;97(3):503–8.

    Article  PubMed  Google Scholar 

  47. Savonen KP, Lakka TA, Laukkanen JA, et al. Usefulness of chronotropic incompetence in response to exercise as a predictor of myocardial infarction in middle-aged men without cardiovascular disease. Am J Cardiol. 2008;101(7):992–8.

    Article  PubMed  Google Scholar 

  48. Phan TT, Shivu GN, Abozguia K, et al. Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(1):29–34.

    Article  PubMed  Google Scholar 

  49. Camm AJ, Fei L. Chronotropic incompetence—part II: clinical implications. Clin Cardiol. 1996;19(6):503–8.

    Article  CAS  PubMed  Google Scholar 

  50. Meine M, Achtelik M, Hexamer M, et al. Assessment of the chronotropic response at the anaerobic threshold: an objective measure of chronotropic function. Pacing Clin Electrophysiol. 2000;23(10 Pt 1):1457–67.

    Article  CAS  PubMed  Google Scholar 

  51. Vandergoten P, Vijgen J, Timmermans P, et al. Chronotropic incompetence: a case report. Congest Heart Fail. 2001;7(4):202–4.

    Article  PubMed  Google Scholar 

  52. Oliveira JL, Goes TJ, Santana TA, et al. Chronotropic incompetence and a higher frequency of myocardial ischemia in exercise echocardiography. Cardiovasc Ultrasound. 2007;5:38.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Freire CM, Moura AL, Barbosa MM, et al. Left ventricle diastolic dysfunction in diabetes: an update. Arq Bras EndocrinolMetabol. 2007;51(2):168–75.

    Google Scholar 

  54. Poanta L, Porojan M, Dumitrascu DL. Heart rate variability and diastolic dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 2011;48(3):191–6.

    Article  PubMed  Google Scholar 

  55. Kitabchi AE, Wall BM. Management of diabetic ketoacidosis. Am Fam Physician. 1999;60(2):455–64.

    CAS  PubMed  Google Scholar 

  56. Salvadori A, Fanari P, Giacomotti E, et al. Kinetics of catecholamines and potassium, and heart rate during exercise testing in obese subjects: heart rate regulation in obesity during exercise. Eur J Nutr. 2003;42(4):181–7.

    Article  CAS  PubMed  Google Scholar 

  57. Charalambous BM, Webster DJ, Mir MA. Elevated skeletal muscle sodium-potassium-ATPase in human obesity. Clin Chim Acta. 1984;141(2–3):189–95.

    Article  CAS  PubMed  Google Scholar 

  58. Mittendorfer B, Fields DA, Klein S. Excess body fat in men decreases plasma fatty acid availability and oxidation during endurance exercise. Am J Physiol Endocrinol Metab. 2004;286(3):E354–62.

    Article  CAS  PubMed  Google Scholar 

  59. Manzella D, Paolisso G. Cardiac autonomic activity and type II diabetes mellitus. Clin Sci (Lond). 2005;108(2):93–9.

    Article  Google Scholar 

  60. Voulgari C, Pagoni S, Vinik A, et al. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62(5):609–21.

    Article  CAS  PubMed  Google Scholar 

  61. Schonauer M, Thomas A, Morbach S, et al. Cardiac autonomic diabetic neuropathy. Diab Vasc Dis Res. 2008;5(4):336–44.

    Article  PubMed  Google Scholar 

  62. Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care. 2010;33(2):434–41.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hirsh BJ, Mignatti A, Garan AR, et al. Effect of beta-blocker cessation on chronotropic incompetence and exercise tolerance in patients with advanced heart failure. Circ Heart Fail. 2012;5(5):560–5.

    Article  CAS  PubMed  Google Scholar 

  64. Colucci WS, Ribeiro JP, Rocco MB, et al. Impaired chronotropic response to exercise in patients with congestive heart failure: role of postsynaptic beta-adrenergic desensitization. Circulation. 1989;80(2):314–23.

  65. Witte KK, Cleland JG, Clark AL. Chronic heart failure, chronotropic incompetence, and the effects of beta blockade. Heart. 2006;92(4):481–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Clark AL, Coats AJ. Chronotropic incompetence in chronic heart failure. Int J Cardiol. 1995;49(3):225–31.

    Article  CAS  PubMed  Google Scholar 

  67. Kawasaki T, Kaimoto S, Sakatani T, et al. Chronotropic incompetence and autonomic dysfunction in patients without structural heart disease. Europace. 2010;12(4):561–6.

    Article  PubMed  Google Scholar 

  68. Gentlesk PJ, Markwood TT, Atwood JE. Chronotropic incompetence in a young adult: case report and literature review. Chest. 2004;125(1):297–301.

    Article  PubMed  Google Scholar 

  69. Munagala VK, Guduguntla V, Kasravi B, et al. Use of atropine in patients with chronotropic incompetence and poor exercise capacity during treadmill stress testing. Am Heart J. 2003;145(6):1046–50.

    Article  CAS  PubMed  Google Scholar 

  70. Ghaffari S, Sohrabi B. Effect of intravenous atropine on treadmill stress test results in patients with poor exercise capacity or chronotropic incompetence. Saudi Med J. 2006;27(2):165–9.

    PubMed  Google Scholar 

  71. Brinkworth GD, Noakes M, Buckley JD, et al. Weight loss improves heart rate recovery in overweight and obese men with features of the metabolic syndrome. Am Heart J. 2006;152(4):693–6.

    Article  PubMed  Google Scholar 

  72. Gannon MC, Nuttall FQ. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes. 2004;53(9):2375–82.

    Article  CAS  PubMed  Google Scholar 

  73. Boden G, Sargrad K, Homko C, et al. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142(6):403–11.

    Article  CAS  PubMed  Google Scholar 

  74. Rock CL, Flatt SW, Pakiz B, et al. Weight loss, glycemic control, and cardiovascular disease risk factors in response to differential diet composition in a weight loss program in type 2 diabetes: a randomized controlled trial. Diabetes Care. 2014;37(6):1573–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Jenkins DJ, Wong JM, Kendall CW, et al. Effect of a 6-month vegan low-carbohydrate (‘Eco-Atkins’) diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: a randomised controlled trial. BMJ Open. 2014;4(2):e003505.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Wong CY, Byrne NM, O’Moore-Sullivan T, et al. Effect of weight loss due to lifestyle intervention on subclinical cardiovascular dysfunction in obesity (body mass index >30 kg/m2). Am J Cardiol. 2006;98(12):1593–8.

    Article  PubMed  Google Scholar 

  77. Poirier P, Hernandez TL, Weil KM, et al. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes Res. 2003;11(9):1040–7.

    Article  PubMed  Google Scholar 

  78. Brinkworth GD, Noakes M, Clifton PM, et al. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring). 2009;17(10):1916–23.

    Article  CAS  Google Scholar 

  79. Miossi R, Benatti FB, Luciade de Sa PA, et al. Using exercise training to counterbalance chronotropic incompetence and delayed heart rate recovery in systemic lupus erythematosus: a randomized trial. Arthritis Care Res (Hoboken). 2012;64(8):1159–66.

    Google Scholar 

  80. Adams BJ, Carr JG, Ozonoff A, et al. Effect of exercise training in supervised cardiac rehabilitation programs on prognostic variables from the exercise tolerance test. Am J Cardiol. 2008;101(10):1403–7.

    Article  PubMed  Google Scholar 

  81. Morton RD, West DJ, Stephens JW, et al. Heart rate prescribed walking training improves cardiorespiratory fitness but not glycaemic control in people with type 2 diabetes. J Sports Sci. 2010;28(1):93–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Inez Wens (Rehabilitation Research Center [REVAL], BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium) for support and time-saving advice regarding certain aspects of this article. No conflicts of interest are reported. No sources of funding were used in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charly Keytsman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keytsman, C., Dendale, P. & Hansen, D. Chronotropic Incompetence During Exercise in Type 2 Diabetes: Aetiology, Assessment Methodology, Prognostic Impact and Therapy. Sports Med 45, 985–995 (2015). https://doi.org/10.1007/s40279-015-0328-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0328-5

Keywords

Navigation