Skip to main content
Log in

Decreased heart rate variability may predict the progression of carotid atherosclerosis in type 2 diabetes

  • RESEARCH ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV), a measure of autonomic function, can predict survival outcomes. Cardiovascular disease is a known complication of diabetes, and we aimed to determine if autonomic dysfunction was associated with carotid artery atherosclerotic plaques in type 2 diabetic patients. We assessed frequency domain HRV from power spectral analysis of 24 h Holter ECG recordings, expiration/inspiration (E/I) ratio during deep breathing, acceleration index (AI) of R–R interval in response to head-up tilt, and the degree of carotid artery atherosclerosis in 61 type-2 diabetic patients (39 males, 45–69 years). Studies were carried out 5–6 years after diagnosis (baseline) and repeated 8 years after diagnosis (follow-up). At baseline, patients diagnosed with autonomic neuropathy, with abnormal E/I ratio and abnormal AI measurements, had decreased low frequency (LF) HRV. Baseline E/I ratio correlated with day (r = 0.34; P < 0.001) and night-time (r = 0.44; P < 0.001) LF power. Night-time HRV did not differ in patient with and without autonomic neuropathy. Reduced common carotid artery diameter and atherosclerotic intima-media thickness (IMT) both correlated with HRV at baseline. At follow-up, all HRV variables decreased significantly. Furthermore, patients with lower LF power at baseline, had a larger increase in the thickness of the carotid bulb intima-media at follow-up. Our results show that LF HRV power is associated with the extent and progression of carotid atherosclerosis in type 2 diabetes. A low LF HRV may predict the progression of atherosclerosis in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    PubMed  CAS  Google Scholar 

  2. Ambepityia G, Kopelman PG, Ingram D, Swash M, Mills PG, Timmis AD (1990) Exertional myocardial ischemia in diabetes: a quantitative analysis of anginal perceptual threshold and the influence of autonomic function. J Am Coll Cardiol 15:72–77

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong FM, Bradbury JE, Ellis SH, Owens DR, Rosén I, Sönksen P, Sundkvist G (1991) A study of peripheral diabetic neuropathy. The application of age-related reference values. Diabet Med 8:S94–S99

    Article  PubMed  Google Scholar 

  4. Bergström B, Manhem P, Bramnert M, Lilja B, Sundkvist G (1989) Impaired responses of plasma catecholamines to exercise in diabetic patients with abnormal heart rate reactions to tilt. Clin Phys 9:259–267

    Google Scholar 

  5. Bigger JT Jr, Fleiss JR, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN (1992) Correlation among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol 69:891–898

    Article  PubMed  Google Scholar 

  6. Bottini P, Tantucci C, Scionti L, Dottorini ML, Puxeddu E, Reboldi G, Bolli GB, Casucci G, Santeusanio F, Sorbini CA, Brunetti P (1995) Cardiovasular response to exercise in diabetic patients: influence of autonomic neuropathy of different severity. Diabetologia 38:244–250

    PubMed  CAS  Google Scholar 

  7. Cevese A, Gulli G, Polati E, Gottin L, Grasso R (2001) Baroreflex and oscillation of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans. J Physiol 531:235–244

    Article  PubMed  CAS  Google Scholar 

  8. Cheng SW, Wu LL, Ting AC, Lau H, Wong J (1999) Screening for asymtomatic carotid stenosis in patients with peripheral vascular disease: a prospective study and risk factor analysis. Cardiovasc Surg 7:303–309

    Article  PubMed  CAS  Google Scholar 

  9. Colhoun HM, Underwood SR, Francis DP, Fuller JH, Rubens MB (2001) The association of heart-rate variability with cardiovascular risk factors and coronary artery calcification. Diabetes Care 24:1108–1114

    PubMed  CAS  Google Scholar 

  10. De Angelis C, Perelli P, Trezza R, Casagrande M, Biselli R, Pannitteri G, Marino B, Farrace S (2001) Modified autonomic balance of offsprings of diabetics detected by spectral analysis of heart rate variability. Metabolism 50:1270–1274

    Article  PubMed  Google Scholar 

  11. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, Grunberger G (1999) Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100:813–819

    PubMed  CAS  Google Scholar 

  12. Edmonds ME, Morrison N, Laws JW, Watkins PJ (1982) Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 284:928–930

    CAS  Google Scholar 

  13. Ewing DJ, Campbell IW, Clarke BF (1980) The natural history of diabetic autonomic neuropathy. Q J Med 49:95–108

    PubMed  CAS  Google Scholar 

  14. Fathi R, Marwick TH (2001) Noninvasive tests of vascular function and structure: why and how to perform them. Am Heart J 141:694–703

    Article  PubMed  CAS  Google Scholar 

  15. Forsen A, Kangro M, Sterner G, Norrgren K, Thorsson O, Wollmer P, Sundkvist G (2004) A 14-year prospective study of autonomic nerve function in Type 1 diabetic patients: association with nephropathy. Diabet Med 21:852–858

    Article  PubMed  CAS  Google Scholar 

  16. Frattola A, Parati G, Gamba P, Paleari F, Mauri G, Di Rienzo M, Castiglioni P, Mancia G (1997) Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40:1470–1475

    Article  PubMed  CAS  Google Scholar 

  17. Gambardella S, Frontoni S, Spallone V, Rosaria Maiello M, Civetta E, Lanza G, Sandric S, Menzinger G, Lanza GA (1993) Increased left ventricular mass in normotensive diabetic patients with autonomic neuropathy. Am J Hypertens 6:97–102

    PubMed  CAS  Google Scholar 

  18. Gottsäter A, Ahmed M, Fernlund P, Sundkvist G (1999) Autonomic neuropathy in Type 2 diabetic patients associated with the metabolic syndrome. Diabet Med 16:49–54

    Article  PubMed  Google Scholar 

  19. Gottsäter A, Szelag B, Kangro M, Wroblewski M, Sundkvist G (2004) Increasing levels of adiponectin and advanced glycated end-products together with decreasing lipid levels 5–8 years after diagnosis in Type 2 diabetic patients. Eur J Endocrinol 151:361–366

    Article  PubMed  Google Scholar 

  20. Gottsäter A, Szelag B, Rydén Ahlgren Å, Hedblad B, Persson J, Berglund G, Wroblewski M, Sundkvist G (2003) Autonomic neuropathy associated with carotid atherosclerosis in Type 2 diabetic patients. Diabet Med 20:495–499

    Article  PubMed  Google Scholar 

  21. Jensen-Urstad K, Reichard P, Jensen-Urstad M (1999) Decreased heart rate variability in patients with type 1 diabetes mellitus is related to arterial wall stiffness. J Intern Med 245:57–61

    Article  PubMed  CAS  Google Scholar 

  22. Jensen-Urstad K, Storck N, Bouvier F, Eriksson M, Lindblad L-E, Jensen-Urstad M (1997) Heart rate variability in healthy subjects is related to age and gender. Acta Physiol Scand 160:235–241

    PubMed  CAS  Google Scholar 

  23. Kerenyi Z, Stella P, Nadasdi A, Tabak AG, Tamas G (1999) Associations between cardiovascular autonomic neuropathy and multimetabolic syndrome in a special cohort of women with prior gestational diabetes mellitus. Diabet Med 16:794–795

    PubMed  CAS  Google Scholar 

  24. Laakso M (1999) Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48:937–942

    PubMed  CAS  Google Scholar 

  25. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484

    Article  PubMed  CAS  Google Scholar 

  26. Liao D, Cai J, Rosamond WD, Barnes RW, Hutchinson RG, Whitsel EA, Rautaharju R, Heiss G (1997) Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. Am J Epidemiol 145:696–706

    PubMed  CAS  Google Scholar 

  27. Liao D, Carnethon M, Evans GW, Cascio WE, Heiss G (2002) Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes 51:3524–3531

    PubMed  CAS  Google Scholar 

  28. Mack WJ, LaBree L, Liu C, Selzer RH, Hodis HN (2000) Correlations between measures of atherosclerosis change using carotid ultrasonography and coronary angiography. Atherosclerosis 150:371–379

    Article  PubMed  CAS  Google Scholar 

  29. Malik M, Camm AJ (1990) Heart rate variability. Clin Cardiol 13:570–576

    Article  PubMed  CAS  Google Scholar 

  30. May O, Arildsen H (2000) Assessing cardiovascular autonomic neuropathy in diabetes mellitus: how many tests to use? J Diabet Complications 14:7–12

    Article  CAS  Google Scholar 

  31. Mayfield JA, Caps MT, Boyko EJ, Ahroni JH, Smith DG (2002) Relationship of medial arterial calcinosis to autonomic neuropathy and adverse outcomes in a diabetic veteran population. J Diabet Complications 16:165–171

    Article  Google Scholar 

  32. Niakan E, Harati Y, Rolak LA, Comstock JP, Rockey R (1986) Silent myocardial infarction and diabetic cardiovascular autonomic neuropathy. Arch Intern Med 146:2229–2230

    Article  PubMed  CAS  Google Scholar 

  33. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, Baig W, Flapan AD, Cowley A, Prescott RJ, Neilson JM, Fox KA (1998) Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 98:1510–1516

    PubMed  CAS  Google Scholar 

  34. Öri Z, Monir G, Weiss J, Sayhouni X, Singer DH (1992) Heart rate variability:frequency domain analysis. Cardiol Clin 10:499–537

    PubMed  Google Scholar 

  35. Persson J, Formgren J, Israelsson B, Berglund G (1994) Ultrasound determined intima-media thickness and atherosclerosis. A direct and indirect validation. Arterioscler Thromb 14:261–264

    PubMed  CAS  Google Scholar 

  36. Persson J, Stavenow L, Wikstrand J, Israelsson B, Formgren J, Berglund G (1992) Non-invasive quantification of atherosclerosis. Reproducibility of ultrasonographic measurement of arterial wall thickness and plaque size. Arterioscler Thromb 12:261–266

    PubMed  CAS  Google Scholar 

  37. Pfeifer MA, Cook D, Brodsky J, Tice D, Reenan A, Swedine S, Halter JB, Porte D Jr (1982) Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes 31:339–345

    PubMed  CAS  Google Scholar 

  38. Pomeranz B, Macaulay RJB, Caudill MA, Kutz I, Adam D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153

    PubMed  CAS  Google Scholar 

  39. Sajadieh A, Wendelboe Nielsen O, Rasmussen V, Hein HO, Abedini S, Fischer Hansen J (2004) Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent disease. Eur Heart J 25:363–370

    Article  PubMed  Google Scholar 

  40. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) Study. Hypertension 42:1106–1111

    Article  PubMed  CAS  Google Scholar 

  41. Simons PC, Algra A, Eikelboom BC, Grobbee DE, van der Graaf Y, SMART study group (1999) Carotid artery stenosis in patients with peripheral arterial disease: the SMART study. J Vasc Surg 30:519–525

    Article  PubMed  CAS  Google Scholar 

  42. Sundkvist G, Almér L-O, Lilja B (1979) Respiratory influence on heart rate in diabetes mellitus. Br Med J 1:924–925

    Article  PubMed  CAS  Google Scholar 

  43. Sundkvist G, Lilja B, Almér L-O (1980) Abnormal diastolic blood pressure and heart rate reactions to tilting in diabetes mellitus. Diabetologia 19:433–438

    Article  PubMed  CAS  Google Scholar 

  44. Szelag B, Wroblewski M, Castenfors J, Henricsson M, Fernlund P, Berntorp K, Sundkvist G (1999) Obesity, microalbuminuria, hyperinsulinaemia, and increased plasminogen activator inhibitor 1 activity associated with parasympathetic neuropathy in type 2 diabetes. Diabetes Care 22:1907–1908

    PubMed  CAS  Google Scholar 

  45. Takayama S, Sakura H, Katsumori K, Wasada T, Iwamoto Y (2001) A possible involvement of parasympathethic neuropathy on insulin resistance in patients with type 2 diabetes. Diabetes Care 24:968–969

    PubMed  CAS  Google Scholar 

  46. Tank J, Neuke A, Molle A, Jordan J, Weck M (2001) Spontaneous baroreflex sensitivity and heart rate variability are not superior to classic autonomic testing in older patients with type 2 diabetes. Am J Med Sci 322:24–30

    Article  PubMed  CAS  Google Scholar 

  47. Toyry JP, Niskanen LK, Lansimies EA, Partanen KP, Uusitupa MI (1996) Autonomic neuropathy predicts the development of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 27:1316–1318

    PubMed  CAS  Google Scholar 

  48. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events: the Framingham Heart Study. Circulation 94:2850–2855

    PubMed  CAS  Google Scholar 

  49. Wendelhag I, Gustavsson T, Suurkula M, Berglund G, Wikstrand J (1991) Ultrasound measurement of wall thickness in the carotid artery. Fundamental principles and description of a computerised image analysing system. Clin Physiol 11:565–577

    PubMed  CAS  Google Scholar 

  50. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J (1997) A new automated computerised analysing system simplifies readings and reduces variability in ultrasound measurement of intima-media thickness. Stroke 28:2195–2200

    PubMed  CAS  Google Scholar 

  51. Wong M, Edelstein J, Wollman J, Bond MG (1993) Ultrasonic-pathological comparison of the human arterial wall. Verification of intima-media thickness. Arterioscler Thromb 13:482–486

    PubMed  CAS  Google Scholar 

  52. Wroblewski M, Gottsäter A, Lindgärde F, Fernlund P, Sundkvist G (1998) Gender, autoantibodies, and obesity in newly diagnosed diabetic patients aged 40–75 years. Diabetes Care 21:250–255

    PubMed  CAS  Google Scholar 

  53. Ziegler D, Laude D, Akila F, Elghozi JL (2001) Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin Auton Res 11:369–376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Helene Brandt, Ulrika Gustavsson, Ann Radelius, Christina Rosborn, Gerd Östling, and Birgitta Frid for skilful technical assistance. This study was supported by grants from the Swedish Diabetes Association, the Swedish Medical Research Council, the Ernhold Lundström Foundation, Research Funds of Malmö University Hospital, Swedish Heart-Lung Foundation, Research Funds at University Hospital MAS, the Albert Påhlsson Foundation, Hulda Ahlmroth Foundation, NW Lundblad Foundation, and the Swedish Life Assurances Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Gottsäter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottsäter, A., Ahlgren, Å.R., Taimour, S. et al. Decreased heart rate variability may predict the progression of carotid atherosclerosis in type 2 diabetes. Clin Auton Res 16, 228–234 (2006). https://doi.org/10.1007/s10286-006-0345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-006-0345-4

Keywords

Navigation