Skip to main content

Pathogenesis of the Plaque Vulnerability in Diabetes Mellitus

  • Chapter
  • First Online:
Mechanisms of Vascular Defects in Diabetes Mellitus

Abstract

Atherosclerosis leads to narrowing of vessels and acute coronary syndrome resulting in ischemic events due to either vasospasm or decreased blood flow. Atherosclerosis and acute coronary syndrome are more common in diabetes mellitus. Hyperglycemia and hypercholesterolemia in diabetes predispose the arteries to plaque development. Smoking, hypertension, male sex, and family history or genetic susceptibility are other predisposing factors for plaque development. Depending on the size, morphology, and symptoms of the patients, plaques can be classified as stable and unstable plaques. Unstable plaques are characterized by the presence of thin fibrous cap, necrotic core, and proliferation of vascular smooth muscle cells, angiogenesis and calcification. Plaque formation initiates with fatty streak and progresses through atheroma, atheromatous plaque to fibroatheromatous plaque. Fibroatheromatous plaques with thick fibrous cap are stable plaques. Thinning of the fibrous cap makes a plaque unstable, prone to rupture and thrombus formation. Mechanisms such as increased inflammation, foam cell deposition, impaired repair mechanism, endothelial cell dysfunction, vascular smooth muscle cell proliferation, angiogenesis, intra-plaque hemorrhage, and calcification which facilitate the plaque rupture are increased in diabetes mellitus. Thus, diabetes mellitus increases the prevalence of plaque formation and rupture. Diabetes mellitus affects various cellular and molecular effectors involved in plaque development and rupture. Understanding these cellular and molecular effectors and involved mechanisms in association with diabetes mellitus is essential for the development of potential therapeutic strategies. This review is a critical overview on the effect of hyperglycemia in diabetes mellitus on the pathogenesis of plaque formation and rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866

    Article  CAS  PubMed  Google Scholar 

  2. Wentzel JJ, Chatzizisis YS et al (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96:234–243

    Article  CAS  PubMed  Google Scholar 

  3. Rao VH, Rai V, Stoupa S, Agrawal DK (2015) Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Am J Physiol Heart Circ Physiol 309:H1075–H1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sarwar N, Gao P, Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222

    Article  CAS  PubMed  Google Scholar 

  5. Cahill LE, Jensen MK, Chiuve SE et al (2015) The risk of coronary heart disease associated with glycosylated hemoglobin of 6.5% or greater is pronounced in the haptoglobin 2-2 genotype. J Am Coll Cardiol 66:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merino J, Leong A, Dupuis J, et al. (2016) OR27-5: genetically driven hyperglycemia increases risk of coronary artery disease distinctly from type 2 diabetes. Diabetes Care 40(5):687–693

    Google Scholar 

  7. Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34:2436–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gleissner CA, Galkina E, Nadler JL, Ley K (2007) Mechanisms by which diabetes increases cardiovascular disease. Drug Discov Today Dis Mech 4:131–140

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kubo T, Imanishi T, Takarada S et al (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939

    Article  PubMed  Google Scholar 

  10. Edsfeldt A, Goncalves I, Grufman H et al (2014) Impaired fibrous repair: a possible contributor to atherosclerotic plaque vulnerability in patients with type II diabetes. Arterioscler Thromb Vasc Biol 34:2143–2150

    Article  CAS  PubMed  Google Scholar 

  11. Skalen K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  CAS  PubMed  Google Scholar 

  12. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  CAS  PubMed  Google Scholar 

  13. Subramanian M, Tabas I (2014) Dendritic cells in atherosclerosis. Semin Immunopathol 36:93–102

    Article  CAS  PubMed  Google Scholar 

  14. Leitinger N, Schulman IG (2013) Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33:1120–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolodgie FD, Burke AP, Nakazawa G, Virmani R (2007) Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol 27:986–989

    Article  CAS  PubMed  Google Scholar 

  16. Stary HC (2001) The development of calcium deposits in atherosclerotic lesions and their persistence after lipid regression. Am J Cardiol 88:16E–19E

    Article  CAS  PubMed  Google Scholar 

  17. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies MJ (2000) The pathophysiology of acute coronary syndromes. Heart 83:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niccoli G, Fracassi F, Crea F (2014) Pathophysiology and clinical significance of plaque rupture. Medicographia 36:37–44

    Google Scholar 

  20. Rao VH, Rai V, Stoupa S, Subramanian S, Agrawal DK (2016) Data on TREM-1 activation destabilizing carotid plaques. Data Brief 8:230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rai V, Rao VH, Shao Z, Agrawal DK (2016) Dendritic cells expressing triggering receptor expressed on myeloid cells-1 correlate with plaque stability in symptomatic and asymptomatic patients with carotid stenosis. PLoS One 11:e0154802

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rao VH, Rai V, Stoupa S, Subramanian S, Agrawal DK (2016) Tumor necrosis factor-alpha regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis 248:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jagannathan-Bogdan M, McDonnell ME, Shin H et al (2011) Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 186:1162–1172

    Article  CAS  PubMed  Google Scholar 

  24. Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99

    Article  CAS  PubMed  Google Scholar 

  26. Mughal MM, Khan MK, DeMarco JK et al (2011) Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:1315–1330

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kato K, Yonetsu T, Kim SJ et al (2012) Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv 5:1150–1158

    Article  PubMed  Google Scholar 

  28. Koskinas KC, Sukhova GK, Baker AB et al (2013) Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol 33:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang SC, Vivian Yang WC (2013) Hyperglycemia induces altered expressions of angiogenesis associated molecules in the trophoblast. Evid Based Complement Alternat Med 2013:457971

    PubMed  PubMed Central  Google Scholar 

  30. Lewandowski KC, Banach E, Bienkiewicz M, Lewinski A (2011) Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch Med Sci 7:294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shamhart PE, Luther DJ, Adapala RK et al (2014) Hyperglycemia enhances function and differentiation of adult rat cardiac fibroblasts. Can J Physiol Pharmacol 92:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chait A, Bornfeldt KE (2009) Diabetes and atherosclerosis: is there a role for hyperglycemia? J Lipid Res 50(Suppl):S335–S339

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rajmohan L, Deepa R, Mohan A, Mohan V (2000) Association between isolated hypercholesterolemia, isolated hypertriglyceridemia and coronary artery disease in south Indian type 2 diabetic patients. Indian Heart J 52:400–406

    CAS  PubMed  Google Scholar 

  34. Hess K, Grant PJ (2011) Inflammation and thrombosis in diabetes. Thromb Haemost 105(Suppl 1):S43–S54

    Article  CAS  PubMed  Google Scholar 

  35. Chen NX, Duan D, O’Neill KD, Moe SM (2006) High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrol Dial Transplant 21:3435–3442

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Yang HY, Giachelli CM (2008) BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Avogaro A, Fadini GP (2015) Mechanisms of ectopic calcification: implications for diabetic vasculopathy. Cardiovasc Diagn Ther 5:343–352

    PubMed  PubMed Central  Google Scholar 

  38. Tripodi A, Branchi A, Chantarangkul V et al (2011) Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis 31:165–172

    Article  CAS  PubMed  Google Scholar 

  39. Domingueti CP, Dusse LM, Carvalho M et al (2016) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat 30:738–745

    Article  PubMed  Google Scholar 

  40. Purushothaman KR, Purushothaman M, Muntner P et al (2011) Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis. Vasc Med 16:103–108

    Article  PubMed  Google Scholar 

  41. Vranes D, Cooper ME, Dilley RJ (1999) Cellular mechanisms of diabetic vascular hypertrophy. Microvasc Res 57:8–18

    Article  CAS  PubMed  Google Scholar 

  42. Tang M, Zhong M, Shang Y et al (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65:2924–2932

    Article  CAS  PubMed  Google Scholar 

  43. Brings S, Zhang S, Choong YS et al (2015) Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation. Biochim Biophys Acta 1852:1610–1618

    Article  CAS  PubMed  Google Scholar 

  44. Carr S, Farb A, Pearce WH, Virmani R, Yao JS (1996) Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 23:755–766

    Article  CAS  PubMed  Google Scholar 

  45. Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 32:1977–1985. 1985a, 1985b, 1985c

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hayden MR, Tyagi SC (2004) Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  CAS  PubMed  Google Scholar 

  48. Carter A, Murphy MO, Turner NJ et al (2007) Intimal neovascularisation is a prominent feature of atherosclerotic plaques in diabetic patients with critical limb ischaemia. Eur J Vasc Endovasc Surg 33:319–324

    Article  CAS  PubMed  Google Scholar 

  49. Ruiz E, Gordillo-Moscoso A, Padilla E et al (2006) Human vascular smooth muscle cells from diabetic patients are resistant to induced apoptosis due to high Bcl-2 expression. Diabetes 55:1243–1251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by research grants R01 HL112597, R01 HL116042, and R01 HL120659 to DK Agrawal from the National Heart, Lung and Blood Institute, National Institutes of Health, USA. The content of this review article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal Ph.D., M.B.A., M.S., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Crown Copyright

About this chapter

Cite this chapter

Rai, V., Agrawal, D.K. (2017). Pathogenesis of the Plaque Vulnerability in Diabetes Mellitus. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_4

Download citation

Publish with us

Policies and ethics