Skip to main content

Numerical Methods for Dispersed Multiphase Flows

  • Chapter
  • First Online:
Particles in Flows

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

This article gives an overview of numerical methods for the calculation of dispersed multi-phase flows. At the beginning, a brief introduction is given on the different flow regimes observed for multi-phase flows in general. Then a characterisation and classification of dispersed multi-phase flows is introduced based on inter-particle spacing and volume fraction. As an introduction to the subject, the numerical methods used for single-phase flows are briefly described based on the turbulent scales being resolved by the numerical grid. Since even dispersed multi-phase flows are extremely complex, the hierarchy of the different numerical methods is highlighted ranging from macro-scale numerical simulations for an entire industrial process down to micro-scale simulations required for analysing particle scale phenomena. Due to constraints in computational power and storage availability, macro-scale simulations can only be done with a limited grid resolution and the assumption of particles being treated as point-masses. Consequently, all transport phenomena occurring on scales smaller than the grid cell and on the scale of the particle have to be considered through additional closures and models. Therefore, essential elements in this multi-scale problem are direct numerical simulations that fully resolve the particles and the flow around them. The different methods for such resolved simulations are briefly described. The major part of this article is focused on the modelling of dispersed multi-phase flows relying on the point-particle assumption. The multi-fluid method or Euler/Euler model is briefly described in order to demark its applicability and limitations. The hybrid Euler/Lagrange approach based on tracking a large number of point particles and its different variants are introduced in more detail, emphasising the two-way coupling approaches for unsteady flows. The importance of accurately modelling particle-scale phenomena is highlighted and an estimate for the significance of particle-wall and inter-particle collisions is given. Finally, three application examples are introduced, emphasising the potential of Euler/Lagrange simulations. For a particle-laden swirling flow the semi-unsteady approach is used for analysing unsteady particle roping phenomena. The simulations of particle suspension in a stirred vessel highlight the importance of inter-particle collisions even at relatively low volume fractions up to 5%. Finally, it is demonstrated that the Euler/Lagrange approach may also be used to study an industrial filtration process where it allows the prediction of particle deposits and filter cake formation. In this respect extensions are possible which provide more information on the internal filter cake structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Abrahamson, Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 30, 1371–1379 (1975)

    Article  Google Scholar 

  2. B. Abramzon, W. Sirignano, Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32, 1605–1618 (1989)

    Article  Google Scholar 

  3. A. Bakker, Applied computational fluid dynamics: Lecture 10: Turbulence models (2002). http://www.bakker.org

    Google Scholar 

  4. G. Balzer, O. Simonin, Extension of Eulerian gas-solid flow modelling to dense fluidised bed prediction. in Proceedings of the 5th International Symposium on Refined Flow Modelling and Turbulence Measurements (1993)

    Google Scholar 

  5. G. Balzer, A. Boelle, O. Simonin, Eulerian gas-solid flow modelling of dense fluidized bed. Fluidization 8, 1125–1134 (1995)

    Google Scholar 

  6. A. Berlemont, P. Desjonqueres, G. Gouesbet, Particle Lagrangian simulation in turbulent flows. Int. J. Multiphase Flow 16, 19–34 (1990)

    Article  MATH  Google Scholar 

  7. C.-U. Böttner, M. Sommerfeld, Numerical calculation of electrostatic powder painting using the Euler/Lagrange approach. Powder Technol. 125, 206–216 (2002)

    Article  Google Scholar 

  8. E. Bourloutski, M. Sommerfeld, Euler/Lagrange calculations of gas-liquid-solid-flows in bubble columns with phase interaction, in Bubbly Flows: Analysis, Modelling and Calculation, ed. by M. Sommerfeld (Springer, Berlin, 2004), pp. 243–259

    Chapter  Google Scholar 

  9. T.M. Burton, J.K. Eaton, Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67–111 (2005)

    Article  MATH  Google Scholar 

  10. P. Chen, M.P. Duduković, J. Sanyal, Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE J. 51, 696–712 (2005)

    Article  Google Scholar 

  11. X.Y. Chen, Ch. Focke, H. Marschall, D. Bothe, Investigation of elementary processes of non-newtonian droplets inside spray processes by means of direct numerical simulation, in Process-Spray (Springer, Cham, 2016)

    Google Scholar 

  12. E. Climent, M.R. Maxey, The force coupling method: a flexible approach for the simulation of particulate flows. Theoretical Methods for Micro Scale Viscous Flows (Transworld Research Network, Trivandrum, 2009), pp. 173–193

    Google Scholar 

  13. J. Cousin, A. Berlemont, T. Ménard, S. Grout, Primary breakup simulation of a liquid jet discharged by a low-pressure compound nozzle. Comput. Fluids 63, 165–173 (2012)

    Article  MATH  Google Scholar 

  14. C.T. Crowe, On the relative importance of particle-particle collisions in gas-particle flows, in Proceedings of the Conference on Gas Borne Particles, Paper 78/81 (1981), pp. 135–137

    Google Scholar 

  15. C.T. Crowe (ed.), Multiphase Flow Handbook (CRC Press/Taylor & Francis Group, Boca Raton, 2006)

    MATH  Google Scholar 

  16. C.T. Crowe, M.P. Sharma, D.E. Stock, The particle-source-in-cell (psi-cell) model for gas-droplet flows. J. Fluids Eng. 99, 325–332 (1977)

    Article  Google Scholar 

  17. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd edn. (CRC Press/Taylor & Francis Group, Boca Raton, 2012)

    Google Scholar 

  18. G.T. Csanady, Turbulent diffusion of heavy particles in the atmosphere. Atmos. Sci. 20, 201–208 (1963)

    Article  Google Scholar 

  19. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  20. S. Decker, Zur Berechnung von gerührten Suspensionen mit dem Euler-Lagrange-Verfahren. Dissertation Martin-Luther-Universität Halle-Wittenberg, Fachbereich Ingenieurwissen-schaften (2005)

    Google Scholar 

  21. N.G. Deen, M. Van Sint Annaland, M.A. Van der Hoef, J.A.M. Kuipers, Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 62, 28–44 (2007)

    Article  MATH  Google Scholar 

  22. J.J. Derksen, Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 58, 2589–2600 (2012)

    Article  Google Scholar 

  23. O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227, 8395–8416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.T. Dhotre, N.G. Deen, B. Niceno, Z. Khan, J.B. Joshi, Large eddy simulation for dispersed bubbly flows: a review. Int. J. Chem. Eng. 2013, Article ID 343276 (2013)

    Google Scholar 

  25. M. Dietzel, M. Sommerfeld, Numerical calculation of flow resistance for agglomerates with different morphology by the lattice-Boltzmann method. Powder Technol. 250, 122–137 (2013)

    Article  Google Scholar 

  26. M. Dietzel, M. Ernst, M. Sommerfeld, Application of the lattice-Boltzmann method for particle-laden flows: point-particles and fully resolved particles. Flow Turbul. Combust. 97, 539–570 (2016)

    Article  Google Scholar 

  27. J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 36, 523–538 (1990)

    Article  Google Scholar 

  28. S. Elghobashi, On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  29. H. Enwald, E. Peirano, A.-E. Almstedt, Eulerian two-phase flow theory applied to fluidisation. Int. J. Multiphase Flow, Suppl. 22, 21–66 (1996)

    Google Scholar 

  30. M. Ernst, Analyse des Clustering-, Kollisions- und Agglomerationsverhalten von Partikeln in laminaren und turbulenten Strömungen, Dissertation Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg (2016)

    Google Scholar 

  31. M. Ernst, M. Sommerfeld, On the volume fraction effects on inertial colliding particles in homogeneous isotropic turbulence. J. Fluids Eng. Trans. ASME 134, 031302 (2012)

    Article  Google Scholar 

  32. M. Ernst, M. Sommerfeld, Resolved numerical simulation of particle agglomeration, in Colloid Process Engineering, Proceedings of Topical problems of Fluid Mechanics 2014 (Springer, Cham, 2015), pp. 45–71

    Google Scholar 

  33. M. Ernst, M. Dietzel, M. Sommerfeld, A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mech. 224, 2425–2449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Fede, O. Simonin, A. Ingram, 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle-wall boundary conditions. Chem. Eng. Sci. 142, 215–235 (2016)

    Article  Google Scholar 

  35. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 3rd edn. (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  36. O. Filippova, D. Hänel, Grid refinement for lattice-BGK models. J. Comput. Phys. 147, 219–228 (1998)

    Article  MATH  Google Scholar 

  37. J. Fröhlich, Large Eddy Simulation turbulenter Strömungen (Teubner Verlag, Wiesbaden, 2006)

    Google Scholar 

  38. H. Gao, H. Li, L.-P. Wang, Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65, 194–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Gidaspow, Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions (Academic, Boston, 1994)

    MATH  Google Scholar 

  40. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Périaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.D. Gosman, I.E. Ioannides, Aspects of computer simulation of liquid-fueled combustors. Aerospace Science Meeting, Paper No. AIAA-81-0323 (1981)

    Google Scholar 

  42. G. Gouesbet, A. Berlemont, Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog. Energy Combust. Sci. 25, 133–159 (1999)

    Article  Google Scholar 

  43. Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14, 2007–2010 (2002)

    Article  MATH  Google Scholar 

  44. T.J. Hanratty, Physics of Gas-Liquid Flows (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  45. C.A. Ho, M. Sommerfeld, Modelling of micro-particle agglomeration in turbulent flow. Chem. Eng. Sci. 57, 3073–3084 (2002)

    Article  Google Scholar 

  46. A. Hölzer, M. Sommerfeld, Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)

    Article  Google Scholar 

  47. S. Horender, Y. Hardalupas, Turbulent particle mass flux in a two-phase shear flow. Powder Technol. 192, 203–216 (2009)

    Article  MATH  Google Scholar 

  48. H.H. Hu, N.A. Patankar, M.Y. Zhu, Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys. 169, 427–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Igci, A.T. Andrews IV, S. Sundaresan, S. Pannala, T. O‘Brian, Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J. 54, 1431–1448 (2008)

    Google Scholar 

  50. R. Issa, Simulation of intermittent flow in multiphase oil and gas pipelines, in Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 9–11 December 2009 (2013)

    Google Scholar 

  51. T.K. Kjeldby, R. Henkes, O.J. Nydal, Slug tracking simulation of severe slugging experiments. Int. J. Mech. Aerospace Ind. Mechatron. Manuf. Eng. 5, 1156–1161 (2011)

    Google Scholar 

  52. G. Kohnen, M. Rüger, M. Sommerfeld, Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in Numerical Methods in Multiphase Flows 1994, FED-vol. 185, ed. by C.T. Crowe et al. (ASME, New York, 1994)

    Google Scholar 

  53. E. Krepper, Th. Frank, D. Lucas, H.M. Prasser, Ph.J. Zwart, Inhomogeneous MUSIG model-a population balance approach for polydispersed bubbly flows, in Proceedings of The 12th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), 30 September - 4 October 2007, Pittsburgh, Pennsylvania, Log No. 60 (2007)

    Google Scholar 

  54. S. Kriebitzsch, R. Rzehak, Baseline model for bubbly flows: simulation of monodisperse flow in pipes of different diameters. Comput. Fluid Dyn. 1, 1–28 (2016)

    Google Scholar 

  55. J.G.M. Kuerten, Point-particle DNS and LES of particle-laden turbulent flow - a state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)

    Article  Google Scholar 

  56. S. Lain, M. Sommerfeld, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness. Powder Technol. 184, 76–88 (2008)

    Article  Google Scholar 

  57. S. Lain, M. Sommerfeld, Numerical calculation of pneumatic conveying in horizontal channels and pipes: Detailed analysis of conveying behaviour. Int. J. Multiphase Flow 39, 105–120 (2012)

    Article  Google Scholar 

  58. S. Lain, M. Sommerfeld, Characterisation of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technol. 235, 764–782 (2013)

    Article  Google Scholar 

  59. S. Lain, D. Bröder, M. Sommerfeld, M.F. Göz, Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure. Int. J. Multiphase Flow 28, 1381–1407 (2002)

    Article  MATH  Google Scholar 

  60. G.L. Lane, M.P. Schwarz, G.M. Evans, Predicting gas-liquid flow in a mechanically stirred tank. Appl. Math. Model. 26, 223–235 (2002)

    Article  MATH  Google Scholar 

  61. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  62. M. Lesieur, O. Metais, P. Comte, Large Eddy Simulations of Turbulence (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  63. J. Li, J.A.M. Kuipers, Gas-particle interactions in dense gas-fluidized beds. Chem. Eng. Sci. 58, 711–718 (2003)

    Article  Google Scholar 

  64. J. Li, J.A.M. Kuipers, Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized bed. Chem. Eng. Sci. 62, 3429–3442 (2007)

    Article  Google Scholar 

  65. Y. Liao, R. Rzehak, D. Lucas, E. Krepper, Baseline closure model for dispersed bubbly flow: bubble coalescence and breakup. Chem. Eng. Sci. 122, 336–349 (2015)

    Article  Google Scholar 

  66. J. Lipowsky, Zur instationären Euler/Lagrange-Simulation partikelbeladener Drallströmungen, Dissertation, Zentrum Für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg (2013)

    Google Scholar 

  67. J. Lipowsky, M. Sommerfeld, Time dependent simulation of a swirling two-phase flow using an anisotropic turbulent dispersion model, in Proceedings of the ASME Fluids Engineering Summer Conference, Houston, Texas (2005)

    Google Scholar 

  68. J. Lipowsky, M. Sommerfeld, LES-simulation of the formation of particle strands in swirling flows using an unsteady Euler-Lagrange approach, in Proceedings of the 6th International Conference on Multiphase Flow, ICMF2007 (2007)

    Google Scholar 

  69. C. Loha, H. Chattopadhyay, P.K. Chatterjee, Assessment of drag models in simulating bubbling fluidized bed hydrodynamics. Chem. Eng. Sci. 75, 400–407 (2012)

    Article  Google Scholar 

  70. S. Lomholt, M.R. Maxey, Force-coupling method for particulate two-phase flow: stokes flow. J. Comput. Phys. 184, 381–405 (2003)

    Article  MATH  Google Scholar 

  71. E. Loth, Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161–223 (2000)

    Article  Google Scholar 

  72. K. Luo, J. Tan, Z. Wang, J. Fan, Particle-resolved direct numerical simulation of gas-solid dynamics in experimental fluidized beds. AIChE J. 62, 1917–1932 (2016)

    Article  Google Scholar 

  73. M.V. Lurie, E. Sinaiski, Modeling of Oil Product and Gas Pipeline Transportation (Wiley-VCH, Weinheim, 2008)

    Book  Google Scholar 

  74. J.M. MacInnes, F.V. Braco, Stochastic particle dispersion and the tracer particle limit. Phys. Fluids A 4, 2809–2824 (1992)

    Article  Google Scholar 

  75. T. Ménard, S. Tanguy, A. Berlemont, Coupling level set/vof/ghost fluid methods: Validation and application to 3d simulation of the primary break-up of a liquid jet. Int. J. Multiphase Flow 33, 510–524 (2007)

    Article  Google Scholar 

  76. R. Mittal, G. Iaccarino, Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Chr. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21, 151–173 (1995)

    Google Scholar 

  78. Chr. Mundo, M. Sommerfeld, C. Tropea, On the modelling of liquid sprays impinging on surfaces. Atomization Sprays 8, 625–652 (1998)

    Google Scholar 

  79. A.F. Nassar, G. Zivkovic, B. Genenger, F. Durst, PDA measurements and numerical simulation of turbulent two-phase flow in stirred vessels, in Bubbly Flows: Analysis, Modelling and Calculation, ed. by M. Sommerfeld (Springer, Berlin, 2004), pp. 337–352

    Chapter  Google Scholar 

  80. D. Oechsle, W. Baur, Praxiserfahrungen mit einem neuen Horizontalfilter. Brauwelt, Jahrg. 129, 2176–2180 (1989)

    Google Scholar 

  81. B. Oesterlé, A. Petitjean, Simulation of particle-to-particle interactions in gas-solid flows. Int. J. Multiphase Flow 19, 199–211 (1993)

    Article  MATH  Google Scholar 

  82. A. Ozel, P. Fede, O. Simonin, Development of filtered Euler-Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Int. J. Multiphase Flow 55, 43–63 (2013)

    Article  Google Scholar 

  83. J.-F. Parmentier, O. Simonin, A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J. 58, 1084–1098 (2012)

    Article  Google Scholar 

  84. C.S. Peskin, The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14, 235–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  85. A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flow (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  86. M.A. Rizk, S.E. Elghobashi, A two-equation turbulence model for dispersed dilute confined two-phase flow. Int. J. Multiphase Flow 15, 119–133 (1989)

    Article  Google Scholar 

  87. M. Rudman, Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 671–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  88. M. Rüger, S. Hohmann, M. Sommerfeld, G. Kohnen, Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. Atomization Sprays 10, 47–81 (2000)

    Article  Google Scholar 

  89. S. Sazhin, Modelling of heating, evaporation and ignition of fuel droplets: combined analytical, asymptotic and numerical analysis. J. Phys. Conf. Ser. 22, 174–193 (2005)

    Article  Google Scholar 

  90. L. Schiller, A. Naumann, Über die grundlegende Berechnung bei der Schwerkraftauf-bereitung. Ver. Dtsch. Ing. 44, 318–320 (1933)

    Google Scholar 

  91. S. Schneiderbauer, S. Pirker, A coarse-grained two-fluid model for gas-solid fluidized beds. J. Comput. Multiphase Flows 6, 29–47 (2014)

    Article  MathSciNet  Google Scholar 

  92. O. Simonin, Prediction of the dispersed phase turbulence in particle laden jet, in Gas-Solid Flows, ed. by D.E. Stock et al. ASME-JSME Fluids Engineering Conference, FED-vol. 121 (ASME, New York, 1991), pp. 197–206

    Google Scholar 

  93. O. Simonin, Statistical and continuum modelling of turbulent reactive particulate flows. Part I: Theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation. Theoretical and Experimental Modelling of Particulate Flow. VKI Lecture Series 2000-06 (von Karman Institute for Fluid Dynamics, Brussels, 2000)

    Google Scholar 

  94. M. Sommerfeld, Particle dispersion in turbulent flow: the effect of particle size distribution. Part. Part. Syst. Charact. 7, 209–220 (1990)

    Article  Google Scholar 

  95. M. Sommerfeld, Modelling of particle/wall collisions in confined gas-particle flows. Int. J. Multiphase Flow 18, 905–926 (1992)

    Article  MATH  Google Scholar 

  96. M. Sommerfeld, Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens. Habilitationsschrift, Universität Erlangen-Nürnberg (Shaker Verlag, Aachen, 1996)

    Google Scholar 

  97. M. Sommerfeld, Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach. KONA (Powder and Particle), No. 16 (1998), pp. 194–206

    Google Scholar 

  98. Sommerfeld, M.: Analysis of isothermal and evaporating sprays using phase-Doppler anemometry and numerical calculations. Int. J. Heat Fluid Flow 19, 173–186 (1998)

    Article  Google Scholar 

  99. M. Sommerfeld, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiphase Flows 27, 1828–1858 (2001)

    Article  MATH  Google Scholar 

  100. M. Sommerfeld, Bewegung fester Partikel in Gasen und Flüssigkeiten, in VDI-Wärmeatlas, 9. Auflage, Kapitel Lca 1–9 (Springer, Berlin, 2002)

    Google Scholar 

  101. M. Sommerfeld (ed.), in Proceedings of the 11th Workshop on Two-Phase Flow Predictions (CD-Rom), Merseburg, April 2005, Fachbereich Ingenieurwissenschaften, University of Halle (2005)

    Google Scholar 

  102. M. Sommerfeld, Particle motion in fluids, in VDI-Buch: VDI Heat Atlas, Part 11 (Springer, Berlin, 2010), pp. 1181–1196

    Google Scholar 

  103. M. Sommerfeld (ed.), in Proceedings of the 12th Workshop on Two-Phase Flow Predictions (CD-Rom), Merseburg, März 2010, Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg (2010)

    Google Scholar 

  104. M. Sommerfeld, Report on the 13th Workshop on Two-Phase Flow Predictions. ERCOFTAC Bulletin, No. 95 (2013)

    Google Scholar 

  105. M. Sommerfeld, S. Decker, State of the art and future trends in CFD simulation of stirred vessel hydrodynamics. Chem. Eng. Technol. 27, 215–224 (2004)

    Article  Google Scholar 

  106. M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions. Int. J. Multiphase Flow 25, 1457–1489 (1999)

    Article  MATH  Google Scholar 

  107. M. Sommerfeld, M. Kuschel, Modelling droplet collision outcomes for different substances and viscosities. Exp. Fluids 57, 187 (2016)

    Article  Google Scholar 

  108. M. Sommerfeld, S. Lain, From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Sci. Technol. 21, 123–140 (2009)

    Article  Google Scholar 

  109. M. Sommerfeld, S. Lain, Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach. Can. J. Chem. Eng. 93, 1–17 (2015)

    Article  Google Scholar 

  110. M. Sommerfeld, S. Lain, Euler/Lagrange methods. in Multiphase Flow Handbook, 2nd edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

  111. M. Sommerfeld, H.-H. Qiu, Characterization of particle laden, confined swirling flows by phase-doppler anemometry and numerical calculation. Int. J. Multiphase Flow 9, 1093–1127 (1993)

    Article  MATH  Google Scholar 

  112. M. Sommerfeld, S. Schmalfuß, Numerical analysis of carrier particle motion in dry powder inhaler. ASME J. Fluid Eng. 138, 041308-1 to 041308-12 (2016)

    Google Scholar 

  113. M. Sommerfeld, S. Stübing, A novel Lagrangian agglomerate structure model. Powder Technol. 319, 34–52 (2017)

    Article  Google Scholar 

  114. M. Sommerfeld, G. Zivkovic, Recent advances in the numerical simulation of pneumatic conveying through pipe systems. in Computational Methods in Applied Science (Elsevier, Amsterdam, 1992)

    Google Scholar 

  115. M. Sommerfeld, G. Kohnen, H.-H. Qiu, Spray evaporation in turbulent flow: numerical calculations and detailed experiments by phase-doppler anemometry. Rev. Inst. Fr. Pétrol. 48, 677–695 (1993)

    Article  Google Scholar 

  116. M. Sommerfeld, G. Kohnen, M. Rüger, Some open questions and inconsistencies of Lagrangian particle dispersion models, in Ninth Symposium on Turbulent Shear Flows, Kyoto Japan (1993)

    Google Scholar 

  117. M. Sommerfeld, S. Decker, G. Kohnen, Time-dependent calculation of bubble columns based on the time-averaged Navier-Stokes equations with turbulence model, in Proceedings of the Japanese-German Symposium on Multi-Phase Flow, Tokyo, Japan (1997), pp. 323–334

    Google Scholar 

  118. M. Sommerfeld, E. Bourloutski, D. Bröder, Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence. Can. J. Chem. Eng. 81, 508–518 (2003)

    Article  Google Scholar 

  119. M. Sommerfeld, B. van Wachem, R. Oliemans, Best practice guidelines for computational fluid dynamics of dispersed multiphase flows, in ERCOFTAC: European Research Community on Flow, Turbulence and Combustion, Brussels (2008)

    Google Scholar 

  120. K.D. Squires, J.K. Eaton, Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169–1178 (1991)

    Article  Google Scholar 

  121. K.D. Squires, J.K. Eaton, Effect of selective modification of turbulence on two-equation models for particle-laden turbulent flows. Trans. ASME, J. Fluids Eng. 116, 778–784 (1994)

    Google Scholar 

  122. S. Sundaresan, Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges. AIChE J. 46, 1102–1105 (2000)

    Article  MathSciNet  Google Scholar 

  123. T. Tanaka, Y. Tsuji, Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision. In Gas-Solid Flows (ASME, New York, 1991)

    Google Scholar 

  124. L. Tang, F. Wen, Y. Yang C.T. Crowe, J.N. Chung, T.R. Troutt, Self-organizing particle dispersion mechanism in free shear flows. Phys. Fluids A4, 2244–2251 (1992)

    Article  Google Scholar 

  125. S. Tenneti, S. Subramaniam, Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46, 199–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  126. Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)

    Article  Google Scholar 

  127. M. Uhlmann, An immersed boundary method with direct forcing for simulation of particulate flows. J. Comput. Phys. 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  128. S. Unverdi, G. Tryggvason, Front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  129. B.G.M. Van Wachem, J.C. Schouten, C.M. Van den Bleek, R. Krishna, J.L. Sinclair, Comparative analysis of CFD models of dense gas-solid systems. AIChE J. 47, 1035–1051 (2001)

    Article  Google Scholar 

  130. A.W. Vreman, Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres. J. Fluid Mech. 796, 40–85 (2016)

    Article  MathSciNet  Google Scholar 

  131. G.B. Wallis, One-Dimensional Two-Phase Flow, 2nd edn. (McGraw Hill, New York, 1979)

    Google Scholar 

  132. Q.G. Wang, W. Yao, Computation and validation of the interphase force models for bubbly flow. Int. J. Heat Mass Transf. 98, 799–813 (2016)

    Article  Google Scholar 

  133. D.C. Wilcox, Turbulence Modelling for CFD, 3rd edn. (DCW Industries, La Cañada Flintridge, 2006)

    Google Scholar 

  134. G.H. Yeoh, J.Y. Tu, Numerical modelling of bubbly flows with and without heat and mass transfer. Appl. Math. Modell. 30, 1067–1095 (2005)

    Article  MATH  Google Scholar 

  135. G.H. Yeoh, J.Y. Tu, Computational Techniques for Multi-Phase Flows (Elsevier, Amsterdam, 2010)

    Google Scholar 

  136. M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiphase Flow 39, 227–239 (2012)

    Article  Google Scholar 

  137. D.H. Zhang, N.G. Deen, J.A.M. Kuipers, Euler-Euler modelling of flow, mass transfer, and chemical reaction in a bubble column. Ind. Eng. Chem. Res. 48, 47–57 (2009)

    Article  Google Scholar 

  138. W. Zhong, Y.Q. Xiong, Z.L. Yuan, M.Y. Zhang, Dem simulation of gas-solid flow behaviours in spout-fluid bed. Chem. Eng. Sci. 61, 1571–1584 (2006)

    Article  Google Scholar 

  139. Q. Zhou, M.A. Leschziner, A time-correlated stochastic model for particle dispersion in anisotropic turbulence, in 8th Symposium on Turbulent Shear Flows, TU Munich, vol. 1 (1991), p. 1031

    Google Scholar 

  140. N. Zuber, J. Findlay, Average volumetric concentration in two-phase systems. Trans. ASME J. Heat Transf. 87, 453–468 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sommerfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sommerfeld, M. (2017). Numerical Methods for Dispersed Multiphase Flows. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Particles in Flows. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-60282-0_6

Download citation

Publish with us

Policies and ethics