Skip to main content
Log in

Application of the Lattice-Boltzmann Method for Particle-laden Flows: Point-particles and Fully Resolved Particles

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The Lattice-Boltzmann-Method (LBM) is a powerful and robust approach for calculating fluid flows over or through complex geometries. This method was further developed for allowing the calculation of several problems relevant to dispersed particle-laden flows. For that purpose two approaches have been developed. The first approach concerns the coupling of the LBM with a classical Lagrangian procedure where the particles are considered as point-masses and hence the particles and the flow around them are numerically not resolved. As an example of use, the flow through a single pore representing a single element of a filter medium was considered and the deposition of nano-scale particles was simulated. The temporal evolution of the deposit structures is visualised and both the filtration efficiency and the pressure drop are simulated and compared with measurements. In the second developed LBM-approach, the particles are fully resolved by the numerical grid whereby the flow around particles is also captured and it is possible to effectively calculate forces on complex particles from the bounce-back boundary condition. As a case study the flow around spherical agglomerates consisting of poly-sized spherical primary particles with sintering contact is examined. Using local grid refinement and curved wall boundary condition, accurate simulations of the drag coefficient of such complex particles were performed. Especially the effect of porosity on the drag was analysed. Moreover, the flow about very porous fractal flocks, generated by a random process, was simulated for different flock size and fractal dimension. The drag coefficients resulting from LBM simulations were compared to theoretical results for Stokes flow. Finally, scenarios with moving particles were considered. First, the sedimentation of a single particle towards a plane wall was simulated and compared with measurements for validation. Secondly, the temporal sedimentation of a cluster of 13 particles was studied. Here, the primary particles were allowed to stick together and form agglomerates. This research will be the basis for further analysing agglomerate formation in laminar and turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. 2nd Edition, CRC Press, Boca Raton, U.S.A., ISBN 978-1-4398-4050-4 (2012)

  2. Sommerfeld, M., van Wachem, B., Oliemans, R.: Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. ERCOFTAC (European Research Community on Flow, Turbulence and Combustion, Print ERCOFTAC, Brussels ISBN 978-91-633-3564-8 (2008)

  3. Squires, K.D., Eaton, J.K.: Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 1191–1203 (1990)

    Article  Google Scholar 

  4. Elghobashi, S., Truesdell, G.: On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids 5, 1790–1801 (1993)

    Article  MATH  Google Scholar 

  5. Squires, K.D., Eaton, J.K.: Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169–1179 (1991)

    Article  Google Scholar 

  6. Wang, L.-P., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech 256, 27–68 (1993)

    Article  Google Scholar 

  7. Wang, L.P., Rosa, B., Gao, H., He, G.H., Jin, G.D.: Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Int. J. Multiphase Flow 35, 854–867 (2009)

    Article  Google Scholar 

  8. Filippova, O., Hänel, D.: Lattice-Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)

    Article  MATH  Google Scholar 

  9. Schomburg, H., Dietzel, M., Michaelis, B., Sommerfeld, M., Teike, G.: Lattice-Boltzmann method with dynamic grid refinement for simulating particle deposition on a single fibre. Journal of Computational Multiphase Flows 5, 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ernst, M., Sommerfeld, M.: On the volume fraction effects on inertial colliding particles in homogeneous isotropic turbulence, vol. 134, p 031302 (2012)

  11. Derksen, J.J., Sundaresan, S., van den Akker, H.E.A.: Simulation of mass-loading effects in gas–solid cyclone separators. Powder Technol. 163, 59–68 (2006)

    Article  Google Scholar 

  12. Sundkorn, R., Derksen, J.J., Khinast, J.G.: Modelling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and Lattice-Boltzmann scheme. Chem. Eng. Sci 66, 2745–2757 (2011)

    Article  Google Scholar 

  13. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech 271, 285–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech 271, 311–339 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, Z.-G., Michaelides, E. E.: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flow. Comput. Fluids 38, 370–381 (2009)

    Article  MATH  Google Scholar 

  16. Derksen, J.J.: Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE Journal 58, 2589–2600 (2012)

    Article  Google Scholar 

  17. Ten Cate, A., Deksen, J.J., Portela, L.M., van den Akker, H.E.A.: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech 519, 233–271 (2004)

    Article  MATH  Google Scholar 

  18. Gao, H., Li, H., Wang, L.-P.: Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comp. & Math. with Applications 65, 194–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hölzer, A., Sommerfeld, M.: Analysis of the behaviour of cylinders in homogeneous isotropic turbulence by Lattice-Boltzmann method. ERCOFTAC Bulletin 82, 11–16 (2010)

    Google Scholar 

  20. Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)

    Article  Google Scholar 

  21. Binder, Ch., Feichtinger, Ch., Schmid, H.-J., Thürey, N., Peukert, W., Rüde, U.: Simulation of the hydrodynamics drag of aggregated particles. J. Colloid and Interface Science 301, 155–1670 (2006)

    Article  Google Scholar 

  22. Dietzel, M., Sommerfeld, M.: LBM simulations on agglomerate transport and deposition. In: The 6 th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Xi’an(China), 11–15 July 2009; AIP Conference Proceedings, vol. 1207, pp 796–801 (2010)

  23. Dietzel, M., Sommerfeld, M.: Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice-Boltzmann Method. Powder Technol. 250, 122–137 (2013)

    Article  Google Scholar 

  24. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  25. Crouse, B.: Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. Dissertation, Technische Universität München (2003)

  26. Dietzel, M., Sommerfeld, M.: Determination of aerodynamic coefficients of agglomerates using the Lattice-Boltzmann-Method. In: Proceedings 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. Trondheim Norway, Paper No. CFD08-105 (2008)

  27. Schiller, L., Naumann, A.: Über die grundlegende Berechnung bei der Schwerkraftaufbereitung. Ver. Deut. Ing 44, 318–320 (1933)

    Google Scholar 

  28. Davies, C.N.: Definitive equation for the fluid resistance of spheres. Proc. Phys. Soc 57, 1060–1065 (1945)

    Article  Google Scholar 

  29. Bouzidi, M., Firdaouss, M., Lallemand P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)

  30. Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6) (2002). doi:10.1063/1.1471914

  31. Ernst, M., Dietzel, M., Sommerfeld, M.: A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. ACTA Mechanica 224, 2425–2449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schomburg, H.: Numerische und experimentelle Analyse der Filtration von Rußpartikeln. Doctoral Thesis Martin-Luther-Universität Halle-Wittenberg (2010)

  33. Dietzel, M., Sommerfeld, M.: DNS der Umströmung heterogener Partikel mittels LBM. CD-ROM Proceedings SPRAY 2010; 9. Workshop über Sprays, Techniken der Fluidzerstäubung und Untersuchung von Sprühvorgängen, Heidelberg, 3.-5. Mai (2010)

  34. Vanni, M.: Creeping flow over spherical permeable aggregates. Chem. Eng. Sci 55, 685–698 (2000)

    Article  Google Scholar 

  35. Martínez-López, F., Cabrerizo-Vílchez, M.A., Hidalgo- Álvarez, R.: An improved method to estimate the fractal dimension of physical fractals based on the Hausdorff definition. Physica A 298, 387–399 (2001)

    Article  MATH  Google Scholar 

  36. Ten Cate, A, Nieuwstad, C.H., Derksen, J.J., Van den Akker, H.E.A.: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14, 4012–4025 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sommerfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietzel, M., Ernst, M. & Sommerfeld, M. Application of the Lattice-Boltzmann Method for Particle-laden Flows: Point-particles and Fully Resolved Particles. Flow Turbulence Combust 97, 539–570 (2016). https://doi.org/10.1007/s10494-015-9698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9698-x

Keywords

Navigation