Skip to main content
Log in

A lattice Boltzmann method for simulating transport and agglomeration of resolved particles

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The main purpose of this contribution is to present a lattice Boltzmann method for modelling the transport, collision and agglomeration of freely moving spherical particles and agglomerates. In order to take the hydrodynamic interaction between fluid and particles into account, the particle surface is fully resolved by the numerical grid using a curved no-slip boundary condition. In addition to various test cases with sedimenting single particles and particle pairs, a comparison with a finite element simulation is performed to evaluate the LBM-based treatment of flow-induced particle forces for gap widths smaller than the resolution limit of the fluid. Furthermore, the influence of viscous forces on the motion of approaching particles is analysed. As a final step, first results on the transient agglomeration inside a poly-sized particle cluster settling under gravity are presented for demonstrating the applicability of the code to more complex problems such as agglomeration in turbulent two-phase flows. The obtained agglomerate morphologies are characterised by various structural parameters such as a convex hull-based porosity and the radius of gyration. In the simulations, the observed particle Reynolds numbers are in the range [0.2, 84.8].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BGK:

Bhatnagar–Gross–Krook

DKT:

Drafting–kissing–tumbling

FDM:

Fictitious domain method

FEM:

Finite element method

LBM:

Lattice Boltzmann method

IBM:

Immersed boundary method

ODE:

Ordinary differential equation

PIV:

Particle imaging velocimetry

A VES :

Surface area of the volume equivalent sphere (m2)

A Agg :

Agglomerate surface area (m2)

c :

Grid constant (m/s)

c D :

Drag coefficient (–)

d P :

Particle diameter (m)

\({\bar{{d}}_P}\) :

Mean primary particle diameter (m)

F :

Force acting on a particle (N)

F Stokes :

Stokes drag force (N)

F ext :

External volume force (N)

F σi :

Discrete force at the particle surface (N)

f :

Distribution function (kg s3/m6)

f eq :

Equilibrium distribution (kg s3/m6)

f 0 :

Oscillation frequency (1/s)

f σ i :

Discrete distribution function (kg/m3)

\({f_{{\sigma} i}^{\ast} }\) :

Post-relaxation discrete distribution function (kg/m3)

\({f_{{\sigma}\, i}^{{\ast}{\ast}} }\) :

Post-propagation discrete distribution function (kg/m3)

\({f_{{\sigma}\, i}^{\rm eq} }\) :

Discrete equilibrium distribution (kg/m3)

\({f_{{\sigma} \, i}^{\rm neq} }\) :

Discrete non-equilibrium distribution (kg/m3)

G :

Fluid shear rate (1/s)

g :

Gravitational acceleration (m/s2)

h :

Gap height (m)

I :

Particle momentum (N s)

J P :

Particle moment of inertia (kg m2)

m P :

Particle mass (kg)

n PP :

Number of agglomerated primary particles (−)

q σ i :

Discrete relative distance (−)

R g :

Radius of gyration (m)

Re P :

Particle Reynolds number (−)

Sr P :

Particle Strouhal number (−)

St :

Particle Stokes number (−)

T :

Oscillation period (s)

T :

Torque acting on a particle (N m)

T σi :

Discrete torque at the particle surface (N m)

t :

Time (s)

U 0 :

Oscillation base velocity (m/s)

u :

Fluid velocity (m/s)

\({\tilde{{\bf u}}}\) :

Extrapolated fluid velocity (m/s)

u G :

Shear rate-based fluid velocity (m/s)

u P :

Particle velocity (m/s)

u Pij :

Modulus of the relative particle velocity (m/s)

u P,∞ :

Particle sedimentation velocity in an infinite medium (m/s)

u * P :

Post-collision particle velocity (m/s)

u S :

Velocity at the solid node (m/s)

V D :

Displaced volume (m3)

V H :

Volume of the convex hull (m3)

V P :

Particle volume (m3)

V S :

Solid-space within the convex hull (m3)

V V :

Void space within the convex hull (m3)

X 0 :

Oscillation amplitude (m)

x :

Position (m)

x F :

Position fluid node (m)

x FF :

Position of the next neighboured fluid node (m)

x P :

Particle position (m)

x Pij :

Modulus of the relative particle position (m)

x P,COM :

Position of particles centre of mass (m)

x R :

Position of centre of rotation (m)

x S :

Position of the solid node (m)

x W :

Position of the physical boundary (m)

α :

Fictitious collision angle()

Δt :

Time step (s)

Δx :

Spatial discretisation (m)

\({\varepsilon}\) :

Porosity (−)

η :

Dynamic fluid viscosity (N s/m2)

η K :

Kolmogorov length scale (m)

ξ :

Velocity of the fluid element (m/s)

ξ σi :

Discrete velocity of the fluid element (m/s)

ρ :

Fluid density (kg/m3)

\({\tilde{\rho}}\) :

Extrapolated fluid density (kg/m3)

ρ P :

Particle density (kg/m3)

τ:

Relaxation parameter (s)

τ P :

Particle response time (s)

φ P :

Particle angular displacement ()

ψ :

sphericity (−)

ω P :

Particle angular velocity (1/s)

\({\boldsymbol{\omega}_P^{\ast} }\) :

Post-collision particle angular velocity (1/s)

ω σi :

Weighting factor of the discrete equilibrium distribution (−)

References

  1. Maury B.: Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys. 156, 325–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Glowinski R., Pan T.W., Hesla T.I., Joseph D.D., Periaux J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang Z., Prosperetti A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Uhlmann M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Takeuchi S., Morita I., Kajishima T.: Motion of particle agglomerate involving interparticle force in dilute suspension. Powder Technol. 184, 232–240 (2008)

    Article  Google Scholar 

  6. Uhlmann M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305 (2008)

    Article  Google Scholar 

  7. Lucci F., Ferrante A., Elghobashi S.: Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 5–55 (2010)

    Article  MATH  Google Scholar 

  8. Ladd A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ladd A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    Article  MathSciNet  Google Scholar 

  10. Ten Cate A., Derksen J.J., Portela L.M., Vanden Akker H.E.A.: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233–271 (2004)

    Article  MATH  Google Scholar 

  11. Gao, H., Li, H., Wang, L.-P.: Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65, 194–210 (2011).

    Google Scholar 

  12. Hölzer A., Sommerfeld M.: Analysis of the behaviour of cylinders in homogeneous isotropic turbulence by Lattice-Boltzmann method. ERCOFTAC Bull. 82, 11–16 (2010)

    Google Scholar 

  13. Hölzer A., Sommerfeld M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)

    Article  Google Scholar 

  14. Binder C., Feichtinger C., Schmid H.-J., Thürey N., Peukert W., Rüde U.: Simulation of the hydrodynamic drag of aggregated particles. J. Colloid Interface Sci. 301, 155–167 (2006)

    Article  Google Scholar 

  15. Dietzel M., Sommerfeld M.: LBM simulations on agglomerate transport and deposition. AIP Conf. Proc. 1207, 796–801 (2010)

    Article  Google Scholar 

  16. Derksen J.J., Eskin D.: Flow-induced forces in agglomerates. Fluid Dyn. Mater. Proc. 7, 341–355 (2011)

    Google Scholar 

  17. Dietzel, M., Ernst, M., Sommerfeld, M.: Application of the Lattice-Boltzmann-method in two-phase flow studies: from point-particles to fully resolved particles. In: Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: vol. 1, Symposia—Parts A, B, C, and D, Paper No. AJK2011-04033, pp. 1697–1707 (2011)

  18. Ernst M., Sommerfeld M.: On the volume fraction effects of inertial colliding particles in homogeneous isotropic turbulence. J. Fluid Eng. 134, 031302 (2012)

    Article  Google Scholar 

  19. He X., Luo L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  20. Chen S., Doolen G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  21. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  22. Crouse, B.: Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. Doctoral Thesis, Technische Universität München (2003)

  23. Bouzidi M., Firdaouss M., Lallemand P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)

    Article  Google Scholar 

  24. Guo Z., Zheng C., Shi B.: An extrapolation method for boundary conditions in the lattice Boltzmann method. Phys. Fluids 14, 2007–2010 (2002)

    Article  Google Scholar 

  25. Mei R., Yu D., Shyy W., Luo L.S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203 (2002)

    Article  Google Scholar 

  26. Kuipers J.B.: Quaternions and Rotation Sequences. Princeton University Press, Princeton (2002)

    Google Scholar 

  27. Caiazzo A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. Int. J. 8, 3–10 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lallemand P., Luo L.S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thömmes G., Becker J., Junk M., Vaikuntam A.K., Kehrwald D., Klar A., Steiner K., Wiegmann A.: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228, 1139–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen N.Q., Ladd A.J.C.: Lubrication corrections for lattice Boltzmann simulations of particle suspensions. Phys. Rev. E. 66, 046708 (2002)

    Article  Google Scholar 

  31. Feng Z.-G., Michaelides E.E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202, 20–51 (2005)

    Article  MATH  Google Scholar 

  32. Tanaka, T., Tsuji, Y.: Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collisions. In: 4th International Symposium on Gas-Solid Flows ASME FED 121, pp. 123–128 (1991)

  33. Schiller L., Naumann A.: über die Grundlegenden Berechnungen bei der Schwerkraftauf-bereitung. Ver. Deu. Ing. 77, 318–320 (1933)

    Google Scholar 

  34. Seo J.H., Mittal R.: A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230, 7347–7363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Feng J., Hu H.H., Joseph D.D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid—Part 1. Sediment. J. Fluid Mech. 261, 95–134 (1994)

    Article  MATH  Google Scholar 

  36. Harada, S., Tanaka, T., Tsuji, Y.: Fluid force acting on a falling particle toward a plane wall. In: Proceedings of the ASME 2000 Fluid Engineering Division Summer Meeting, Paper No. FEDSM2000-11267 (2000)

  37. Feng Z.-G., Michaelides E.E.: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows. Comput. Fluids 38, 370–381 (2009)

    Article  MATH  Google Scholar 

  38. Ten Cate A., Nieuwstad C.H., Derksen J.J., Vanden Akker H.E.A.: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14, 4012–4025 (2002)

    Article  Google Scholar 

  39. Behr M., Tezduyar T.: Finite element solution strategies for large-scale flow simulations. Comput. Method Appl. M. 112, 3–24 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Becker V., Schlauch E., Behr M., Briesen H.: Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation. J. Colloid Interface Sci. 339, 362–372 (2009)

    Article  Google Scholar 

  41. Teike G., Dietzel M., Michaelis B., Schomburg H., Sommerfeld M.: Multiscale lattice–Boltzmann approach for electrophoretic particle deposition. Aerosol Sci. Tech. 46, 451–464 (2012)

    Article  Google Scholar 

  42. Schlauch, E., Ernst, M., Seto, R., Briesen, H., Sommerfeld, M., Behr, M.: Comparison of three simulation methods for colloidal aggregates in Stokes flow: finite elements, lattice Boltzmann and Stokesian dynamics. Preprint submitted to Comput. Fluids

  43. Sharma N., Patankar N.A.: A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comput. Phys. 205, 439–457 (2005)

    Article  MATH  Google Scholar 

  44. Zhang Z., Prosperetti A.: A method for particle simulation. J. Appl. Mech. 70, 64–74 (2012)

    Article  Google Scholar 

  45. Vinningland J.L., Johnsen O., Flekkøy E.G., Toussaint R., Måløy K.J.: Experiments and simulations of a gravitational granular flow instability. Phys. Rev. E. 76, 051306 (2007)

    Article  Google Scholar 

  46. Wadell H.: Volume, shape and roundness of quartz particles. J. Geol. 43, 250–280 (1935)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ernst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M., Dietzel, M. & Sommerfeld, M. A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mech 224, 2425–2449 (2013). https://doi.org/10.1007/s00707-013-0923-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0923-1

Keywords

Navigation