Skip to main content

Characterization of Aqueous Two-Phase Systems and Their Potential New Applications

  • Chapter
  • First Online:
Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products

Abstract

Characterization of aqueous two-phase systems is an important procedure crucial for their successful operation. In these systems, the partition behavior of the solutes not only depends on their physicochemical properties but on the selected system design parameters which vary in a case-by-case basis. The selection of the phase-forming chemicals, their concentration, and other additives such as inert salts directly impacts certain intrinsic properties that need to be studied in order to fully understand the phenomena that lead to a specific partition behavior. This is due to the fact that properties such as surface tension, electric potential, electrochemical charge, hydrophobicity, and viscosity will all interact in a certain manner with the solutes and will dictate the thermodynamic equilibrium at which a specific partition will be achieved. This chapter presents an insight in the different aspects and properties that need to be measured in ATPS operations regarding both the system (i.e., phase-forming chemical properties, concentration, volume ratios) and the solutes (i.e., physicochemical characteristics) to be processed in order to better understand partition behaviors and certain procedures to do so. It also presents some of the most advances tendencies to achieve this characterization which then have an impact in the development of better strategies. These advances are also reflected in novel uses that are being given to ATPS operations both in bioprocessing and as an analytical tool which are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADSA:

Axisymmetric drop shape analysis

ATPS:

Aqueous two-phase system

DARA:

Distribution analysis of radiolabeled analytes

HPLC:

High-performance liquid chromatography

HTS:

High throughput screening

K P :

Partition coefficient

LHS:

Liquid-handling stations

PEG:

Polyethylene glycol

TLL:

Tie-line length

V R :

Volume ratio

References

  • Aguilar O, Glatz CE, Rito-Palomares M. Characterization of green-tissue protein extract from alfalfa (Medicago sativa) exploiting a 3-D technique. J Separation Sci. 2009;32(18):3223–31.

    Article  CAS  Google Scholar 

  • Amrhein S, Schwab M-L, Hoffmann M, Hubbuch J. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations. J Chromatogr A. 2014;1367:68–77.

    Article  CAS  Google Scholar 

  • Andersson E, Hahn-Hägerdal B. Bioconversions in aqueous two-phase systems. Enzyme Microbial Technol. 1990;12(4):242–54.

    Article  CAS  Google Scholar 

  • Andrews BA, Schmidt AS, Asenjo JA. Correlation for the partition behavior of proteins in aqueous two-phase systems: effect of surface hydrophobicity and charge. Biotechnol Bioeng. 2005;90(3):380–90.

    Article  CAS  Google Scholar 

  • Atefi E, Mann JA, Tavana H. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir. 2014;30(32):9691–9.

    Article  CAS  Google Scholar 

  • Benavides J, Rito-Palomares M, Asenjo JA. Aqueous two-phase systems. Comprehensive Biotechnol. 2011:697–713.

    Google Scholar 

  • Benavides JA, Rito-Palomares MA. Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. J Chem Technol Biotechnol. 2008;83(2):133–42.

    Article  CAS  Google Scholar 

  • Bensch M, Selbach B, Hubbuch J. High throughput screening techniques in downstream processing: preparation, characterization and optimization of aqueous two-phase systems. Chem Eng Sci. 2007;62(7):2011–21.

    Article  CAS  Google Scholar 

  • Brooks DE, Jones RN. Measurement of some physical properties of aqueous two-phase systems. Aqueous Two-Phase Systems Methods Protoc. 2000:35–45.

    Google Scholar 

  • de Oliveira RM, JSDR C, Francisco KR, Minim LA, LHM d S, JAM P. Liquid−liquid equilibrium of aqueous two-phase systems containing poly(ethylene) glycol 4000 and zinc Sulfate at different temperatures. J Chem Eng Data. 2008;53(4):919–22.

    Article  Google Scholar 

  • Diamond AD, Hsu JT. Aqueous two-phase systems for biomolecule separation. Adv Biochem Eng Biotechnol. 1992;47:89–135.

    CAS  Google Scholar 

  • Diamond AD, Hsu JT. Fundamental studies of biomolecule partitioning in aqueous two-phase systems. Biotechnol Bioeng. 1989;34(7):1000–14.

    Article  CAS  Google Scholar 

  • Forciniti D. Preparation of aqueous two-phase systems. Aqueous Two-Phase Systems Methods Protoc. 2000:23–33.

    Google Scholar 

  • González-Valdez J, Rito-Palomares M, Benavides J. Effects of chemical modifications in the partition behavior of proteins in aqueous two-phase systems: a case study with RNase a. Biotechnol Prog. 2013;29(2):378–85.

    Article  Google Scholar 

  • González-Valdez J, Rito-Palomares MA, Benavides JA. Quantification of RNase a and its PEGylated conjugates on polymer-salt rich environments using UV spectrophotometry. Anal Lett. 2011;44(5):800–14.

    Article  Google Scholar 

  • Kaul A. The phase diagram. Aqueous Two-Phase Systems Methods Protoc. 2000:11–21.

    Google Scholar 

  • Kuboi R, Morita S, Ota H, Umakoshi H. Protein refolding using stimuli-responsive polymer-modified aqueous two-phase systems. J Chromatogr B Biomed Sci App. 2000;743(1):215–23.

    Article  CAS  Google Scholar 

  • Lebreton B, Walker SG, Lyddiatt A. Characterization of aqueous two-phase partition systems by distribution analysis of radiolabeled analytes (DARA): application to process definition and control in biorecovery. Biotechnol Bioeng. 2002;77(3):329–39.

    Article  CAS  Google Scholar 

  • Leong YK, Lan JC-W, Loh H-S, Ling TC, Ooi CW, Show PL. Thermoseparating aqueous two-phase systems: recent trends and mechanisms. J Separation Sci. 2016;39(4):640–7.

    Article  CAS  Google Scholar 

  • Lladosa E, Silvério SC, Rodríguez O, Teixeira JA, Macedo EA. (Liquid + liquid) equilibria of polymer-salt aqueous two-phase systems for laccase partitioning: UCON 50-HB-5100 with potassium citrate and (sodium or potassium) formate at 23 °C. J Chem Thermodyn. 2012;55:166–71.

    Article  CAS  Google Scholar 

  • Mayolo-Deloisa K, González-Valdez J, Guajardo-Flores D, Aguilar OA, Benavides JA, Rito-Palomares MA. Current advances in the non-chromatographic fractionation and characterization of PEGylated proteins. J Chem Technol Biotechnol. 2011;86(1):18–25.

    Article  CAS  Google Scholar 

  • Mistry SL, Kaul A, Merchuk JC, Asenjo JA. Mathematical modelling and computer simulation of aqueous two-phase continuous protein extraction. J Chromatogr A. 1996;741(2):151–63.

    Article  CAS  Google Scholar 

  • Montalvo-Hernández B, Rito-Palomares M, Benavides J. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems. J Chromatoge A. 2012;1236:7–15.

    Article  Google Scholar 

  • Munchow G, Hardt S, Kutter JP, Drese KS. Electrophoretic partitioning of proteins in two-phase microflows. Lab Chip. 2007;7(1):98–102.

    Article  CAS  Google Scholar 

  • Olivera-Nappa A, Lagomarsino G, Andrews BA, Asenjo JA. Effect of electrostatic energy on partitioning of proteins in aqueous two-phase systems. J Chromatogr B. 2004;807(1):81–6.

    Article  CAS  Google Scholar 

  • Princen HM, Zia IYZ, Mason SG. Measurement of interfacial tension from the shape of a rotating drop. J Colloid Interface Sci. 1967;23(1):99–107.

    Article  CAS  Google Scholar 

  • Rito-Palomares MA, Lyddiatt A. Process integration using aqueous two-phase partition for the recovery of intracellular proteins. Chem Eng J. 2002;87(3):313–9.

    Article  CAS  Google Scholar 

  • Rito-Palomares MA. Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B. 2004;807(1):3–11.

    Article  CAS  Google Scholar 

  • Rosa PAJ, Ferreira IF, Azevedo AM, Aires-Barros MR. Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A. 2010;1217(16):2296–305.

    Article  CAS  Google Scholar 

  • Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M. Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A. 2012;1244:1–13.

    Article  CAS  Google Scholar 

  • Sánchez-Trasviña C, González-Valdez J, Mayolo-Deloisa K, Rito-Palomares M. Impact of aqueous two-phase system design parameters upon the in situ refolding and recovery of invertase. J Chem Technol Biotechnol. 2015;90(10):1765–72.

    Article  Google Scholar 

  • Schmidt AS, Andrews BA, Asenjo JA. Correlations for the partition behavior of proteins in aqueous two-phase systems: effect of overall protein concentration. Biotechnol Bioeng. 1996;50(6):617–26.

    Article  CAS  Google Scholar 

  • Staicopolus DN. The computation of surface tension and of contact angle by the sessile-drop method. J Colloid Sci. 1962;17(5):439–47.

    Article  CAS  Google Scholar 

  • Trindade IP, Diogo MM, Prazeres DMF, Marcos JC. Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography. J Chromatogr A. 2005;1082(2):176–84.

    Article  CAS  Google Scholar 

  • Vázquez-Villegas P, Aguilar O, Rito-Palomares M. Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol. 2015;141:263–8.

    Article  Google Scholar 

  • Vazquez-Villegas P, Ouellet E, González C, Ruiz-Ruiz F, Rito-Palomares MA, Haynes C, et al. A microdevice assisted approach for the preparation, characterization and selection of continuous aqueous two-phase systems: from micro to bench-scale. Lab Chip. 2016;16:2662–72.

    Article  CAS  Google Scholar 

  • Vázquez-Villegas P, Espitia-Saloma E, Rito-Palomares M, Aguilar O. Low-abundant protein extraction from complex protein sample using a novel continuous aqueous two-phase systems device. J Separation Sci. 2013;36(2):391–9.

    Article  Google Scholar 

  • Walter H. Aqueous two-phase systems. Berlin: Elsevier; 1994.

    Google Scholar 

  • Zaslavsky B. Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. New York: Marcel Dekker, Inc.; 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rito-Palomares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

González-Valdez, J., Benavides, J., Rito-Palomares, M. (2017). Characterization of Aqueous Two-Phase Systems and Their Potential New Applications. In: Rito-Palomares, M., Benavides, J. (eds) Aqueous Two-Phase Systems for Bioprocess Development for the Recovery of Biological Products. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-59309-8_2

Download citation

Publish with us

Policies and ethics