Skip to main content
Log in

Aqueous Two-Phase Systems: simple one-step process formulation and phase diagram for characterisation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aqueous two-phase system (ATPS), also called “water-in-water” emulsion, is a multi-component system (aqueous droplets dispersed in a continuous aqueous phase), formed after gently mixing two aqueous solutions of immiscible polymers. It allows the formation of different compartments without adding any organic solvent, according to a green process. Nevertheless, the kinetic stability of ATPS is generally difficult to control. Phase diagrams, which express the concentration of a polymer as a function of that of the other in solution, are used to characterise ATPS and to determine conditions for preparing emulsions from selected polymers. In this study, dextran and polyethylene oxide aqueous mixtures with different processing parameters are investigated. Phase diagrams are generated through two automatic methods (Turbiscan and LUMiSizer® technologies) and a manual one. With the diagrams obtained, it is concluded that the purity of polyethylene oxide affects the ATPS, whereas the use of polymers in powder or in solution form has no effect. In view of this result, it is allowed to prepare ATPS formulation by a simple one-step process from polymers in powder form.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Supporting information is available.

Abbreviations

ATPS:

aqueous two-phase system

Dex:

dextran

PEO:

polyethylene oxide

Wt%:

mass concentration as a percentage

References

  1. Sagis LMC (2009) Dynamics of encapsulation and controlled release systems based on water-in-water emulsions: liposomes and polymersomes. Phys A Stat Mech Appl 388:2579–2587. https://doi.org/10.1016/j.physa.2009.03.024

    Article  CAS  Google Scholar 

  2. Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M (2012) Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A 1244:1–13. https://doi.org/10.1016/j.chroma.2012.04.077

    Article  CAS  PubMed  Google Scholar 

  3. Fan W, Glatz CE (1999) Charged protein partitioning in aqueous polyethylene glycol-dextran two-phase systems: salt effects. Sep Sci Technol 34:423–438. https://doi.org/10.1081/SS-100100659

    Article  CAS  Google Scholar 

  4. Fan W, Bakir U, Glatz CE (1998) Contribution of protein charge to partitioning in aqueous two-phase systems. Biotechnol Bioeng 59:461–470. https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4<461::AID-BIT9>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  5. Jiang J, Prausnitz JM (2000) Molecular thermodynamics for partitioning of native and denatured proteins in aqueous two-phase systems. J Phys Chem B 104:7197–7205. https://doi.org/10.1021/jp994371h

    Article  CAS  Google Scholar 

  6. Johansson H-O, Persson J, Tjerneld F (1999) Thermoseparating water/polymer system: a novel one-polymer aqueous two-phase system for protein purification. Biotechnol Bioeng 66:247–257. https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<247::AID-BIT6>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  7. Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18:18. https://doi.org/10.1186/s12575-016-0048-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atefi E, Joshi R, Tavana H (2017) Effect of molecular weight of phase polymers on partition of cells in aqueous two-phase systems. MRS Adv 2:2415–2426. https://doi.org/10.1557/adv.2017.425

    Article  CAS  Google Scholar 

  9. Sumida E, Iwasaki Y, Akiyoshi K, Kasugai S (2006) Platelet separation from whole blood in an aqueous two-phase system with water-soluble polymers. J Pharmacol Sci 101:91–97. https://doi.org/10.1254/jphs.FP0060062

    Article  CAS  PubMed  Google Scholar 

  10. Atefi E, Lemmo S, Fyffe D, Luker GD, Tavana H (2014) High throughput, polymeric aqueous two-phase printing of tumor spheroids. Adv Funct Mater 24:6509–6515. https://doi.org/10.1002/adfm.201401302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zaslavsky A, Madeira P, Breydo L, Uversky VN, Chait A, Zaslavsky B (2013) High throughput characterization of structural differences between closely related proteins in solution. Biochim Biophys Acta Protein Proteomics 1834:583–592. https://doi.org/10.1016/j.bbapap.2012.11.004

    Article  CAS  Google Scholar 

  12. Buzza DMA, Fletcher PDI, Georgiou TK, Ghasdian N (2013) Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers-templated polymersomes. Langmuir 29:14804–14814. https://doi.org/10.1021/la403356j

    Article  CAS  PubMed  Google Scholar 

  13. Stenekes RJH, Franssen O, van Bommel EMG, Crommelin DJA, Hennink WE (1999) The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres. Int J Pharm 183:29–32. https://doi.org/10.1016/S0378-5173(99)00038-1

    Article  CAS  PubMed  Google Scholar 

  14. Sagis LMC (2008) Dynamics of controlled release systems based on water-in-water emulsions: a general theory. J Control Release 131:5–13. https://doi.org/10.1016/j.jconrel.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh S, Vijayalakshmi R, Swaminathan T (2004) Evaluation of an alternative source of dextran as a phase forming polymer for aqueous two-phase extractive system. Biochem Eng J 21:241–252. https://doi.org/10.1016/j.bej.2004.07.005

    Article  CAS  Google Scholar 

  16. Edelman MW, Van Der Linden E, Tromp RH (2003) Phase separation of aqueous mixtures of poly(ethylene oxide) and dextran. Macromolecules 36:7783–7790. https://doi.org/10.1021/ma0341622

    Article  CAS  Google Scholar 

  17. Leng D, Thanki K, Fattal E, Foged C, Yang M (2018) Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach. Int J Pharm 548:740–746. https://doi.org/10.1016/j.ijpharm.2017.08.094

    Article  CAS  PubMed  Google Scholar 

  18. Scholten E, Sagis LMC, van der Linden E (2006) Effect of bending rigidity and interfacial permeability on the dynamical behavior of water-in-water emulsions. J Phys Chem B 110:3250–3256. https://doi.org/10.1021/jp056528d

    Article  CAS  PubMed  Google Scholar 

  19. Balakrishnan G, Nicolai T, Benyahia L, Durand D (2012) Particles trapped at the droplet interface in water-in-water emulsions. Langmuir 28:5921–5926. https://doi.org/10.1021/la204825f

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen BT, Nicolai T, Benyahia L (2013) Stabilization of water-in-water emulsions by addition of protein particles. Langmuir 29:10658–10664. https://doi.org/10.1021/la402131e

    Article  CAS  PubMed  Google Scholar 

  21. Atefi E, Mann JA, Tavana H (2014) Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir 30:9691–9699. https://doi.org/10.1021/la500930x

    Article  CAS  PubMed  Google Scholar 

  22. Sagis LMC (2008) Dynamics of encapsulation and controlled release systems based on water-in-water emulsions: negligible surface rheology. J Phys Chem B 112:13503–13508. https://doi.org/10.1021/jp806014b

    Article  CAS  PubMed  Google Scholar 

  23. Kaul A (2000) The phase diagram. Methods Biotechnol 11:11–21. https://doi.org/10.1385/1-59259-028-4:11

    Article  CAS  Google Scholar 

  24. Forciniti D, Hall CK, Kula M-R (1991) Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems. Fluid Phase Equilib 61:243–262. https://doi.org/10.1016/0378-3812(91)80002-D

    Article  CAS  Google Scholar 

  25. Shin H, Han C, Labuz JM, Kim J, Kim J, Cho S, Gho YS, Takayama S, Park J (2015) High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep 5:13103. https://doi.org/10.1038/srep13103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ooi CW, Hii SL, Kamal SMM, Ariff A, Ling TC (2011) Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. Process Biochem 46:68–73. https://doi.org/10.1016/j.procbio.2010.07.014

    Article  CAS  Google Scholar 

  27. Chavez-Santoscoy A, Benavides J, Vermaas W, Rito-Palomares M (2010) Application of aqueous two-phase systems for the potential extractive fermentation of cyanobacterial products. Chem Eng Technol 33:177–182. https://doi.org/10.1002/ceat.200900286

    Article  CAS  Google Scholar 

  28. Amrhein S, Schwab ML, Hoffmann M, Hubbuch J (2014) Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations. J Chromatogr A 1367:68–77. https://doi.org/10.1016/j.chroma.2014.09.042

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira LA, Uversky VN, Zaslavsky BY (2018) Modified binodal model describes phase separation in aqueous two-phase systems in terms of the effects of phase-forming components on the solvent features of water. J Chromatogr A 1567:226–232. https://doi.org/10.1016/j.chroma.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  30. Rao W, Wang Y, Han J, Wang L, Chen T, Liu Y, Ni L (2015) Cloud point and liquid-liquid equilibrium behavior of thermosensitive polymer L61 and salt aqueous two-phase system. J Phys Chem B 119:8201–8208. https://doi.org/10.1021/acs.jpcb.5b03201

    Article  CAS  PubMed  Google Scholar 

  31. Fele L, Fermeglia M (1996) Partition coefficients of proteins in poly(ethylene glycol) + dextran + water at 298 K. J Chem Eng Data 41:331–334. https://doi.org/10.1021/je9502298

    Article  CAS  Google Scholar 

  32. Hatti-Kaul R (2001) Aqueous two-phase systems: a general overview. Mol Biotechnol 19:269–278. https://doi.org/10.1385/MB:19:3:269

    Article  CAS  PubMed  Google Scholar 

  33. Asenjo JA, Andrews BA (2012) Aqueous two-phase systems for protein separation: phase separation and applications. J Chromatogr A 1238:1–10. https://doi.org/10.1016/j.chroma.2012.03.049

    Article  CAS  PubMed  Google Scholar 

  34. Torres-Acosta MA, Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M (2018) Aqueous two-phase systems at large scale: challenges and opportunities. Biotechnol J 1800117:1800117. https://doi.org/10.1002/biot.201800117

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Roger.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumas, F., Roger, E., Rodriguez, J. et al. Aqueous Two-Phase Systems: simple one-step process formulation and phase diagram for characterisation. Colloid Polym Sci 298, 1629–1636 (2020). https://doi.org/10.1007/s00396-020-04748-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04748-8

Keywords

Navigation