Skip to main content

Feeling Fishy: Trait Differences in Zebrafish (Danio Rerio)

  • Chapter
  • First Online:
Personality in Nonhuman Animals

Abstract

Personality in humans refers to the behavioral, affective, and cognitive traits that persist through time and across context. However, specific definitions and methods of quantifying personality vary depending on the specific approach that researchers emphasize. The trait approach allows clinicians to make informed diagnoses about their patients, and demonstrates predictive validity regarding health (e.g., longevity) and personal (e.g., occupational success) outcomes. The trait approach has also been applied to study personality development and personality disorders in nonhuman species. The zebrafish (Danio rerio) is a widely used neurobehavioral model organism that demonstrates tremendous translational potential with humans. Zebrafish exhibit several traits that remain consistent with time and across situations and, thus, have some personality traits like those of humans. Many behavioral and genetic differences have been observed between laboratory bred and wild-type zebrafish, which are largely attributable to a decrease in selection pressures in the laboratory setting. Selective breeding of zebrafish allows for the study of particular phenotypes (e.g., anxiety) to gain a deeper understanding of behavioral phenotypes, and provides a model for testing novel drug treatments. Here, we discuss the five major traits exhibited by zebrafish (boldness, exploration, activity, aggression, and sociability), and population (strain) differences in these traits. The use of zebrafish as neurobehavioral models of personality, and potential for the development of drug therapies for personality disorders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton, G. S. (2003). Measurement of impulsivity in a hierarchical model of personality traits: Implications for substance use. Substance Use and Misuse, 38, 67–83.

    Article  PubMed  Google Scholar 

  • Allport, G. W. (1931). What is a trait of personality? The Journal of Abnormal and Social Psychology, 25, 368.

    Article  Google Scholar 

  • Alsop, D., & Vijayan, M. M. (2008). Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R711–R719.

    Article  PubMed  Google Scholar 

  • Alsop, D., & Vijayan, M. M. (2009). The zebrafish stress axis: Molecular fallout from the teleost-specific genome duplication event. International Fish Endocrine Symposium Special Issue, 161, 62–66.

    Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Apperley, L. A. (2012). What is “theory of mind”? Concepts, cognitive processes, and individual differences. The Quarterly Journal of Experimental Psychology, 65, 825–839.

    Article  Google Scholar 

  • Ariyomo, T. O., Carter, M., & Watt, P. J. (2013). Heritability of boldness and aggressiveness in the zebrafish. Behavior Genetics, 43, 161–167.

    Article  PubMed  Google Scholar 

  • Ariyomo, T. O., & Watt, P. J. (2012). The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish, Danio rerio. Animal Behaviour, 83, 41–46.

    Article  Google Scholar 

  • Backstrom, J. R., Chang, M. S., Chu, H., Niswender, C. M., & Sanders-Bush, E. (1999). Agonist-directed signaling of serotonin 5-HT2C receptors: Differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology, 21(2 Suppl), 77S–81S.

    PubMed  Google Scholar 

  • Barba-Escobedo, P. A., & Gould, G. G. (2012). Visual social preferences of lone zebrafish in a novel environment: Strain and anxiolytic effects. Genes, Brain and Behavior, 11, 366–373.

    Article  Google Scholar 

  • Barkus, C. (2013). Genetic mouse models of depression. Current Topics in Behavioral Neuroscience, 14, 55–78.

    Article  Google Scholar 

  • Belzung, C. (2014). Innovative drugs to treat depression: Did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology, 39, 1041–1051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12, 81–84.

    Article  PubMed  Google Scholar 

  • Best, J. D., Berghmans, S., Hunt, J. J., Clarke, S. C., Fleming, A., Goldsmith, P., et al. (2008). Non-associative learning in larval zebrafish. Neuropsychopharmacology, 33, 1206–1215.

    Article  PubMed  Google Scholar 

  • Bhat, A. (2004). Patterns in the distribution of freshwater fishes in rivers of Central Western Ghats, India and their associations with environmental gradients. Hydrobiologia, 529, 83–97.

    Article  Google Scholar 

  • Bouchard, T., Jr., & Loehlin, J. C. (2001). Genes, evolution, and personality. Behavior Genetics, 31, 243–273.

    Article  PubMed  Google Scholar 

  • Buske, C., & Gerlai, R. (2012). Maturation of shoaling behavior is accompanied by change in the dopaminergic and serotoninergic systems in zebrafish. Developmental Psychobiology, 54, 28–35.

    Article  PubMed  Google Scholar 

  • Cachat, J. M., Kyzar, E., Collins, C., Gaikwad, S., Green, J., Roth, A., et al. (2013). Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behavioural Brain Research, 236, 258–269.

    Article  PubMed  Google Scholar 

  • Cahill, G. M. (1996). Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Research, 708, 177–181.

    Article  PubMed  Google Scholar 

  • Caravaggio, F., Fervaha, G., Chung, J. K., Gerretsen, P., Nakajima, S., Plitman, E., et al. (2016). Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans. European Neuropsychopharmacology, 26, 644–652.

    Article  PubMed  PubMed Central  Google Scholar 

  • Claridge, G., & Davis, C. (2013). Personality dimensions: description and biology. In Personality and psychological disorders (pp. 31–59). London: Routledge.

    Google Scholar 

  • Clark, L. A. (2007). Assessment and diagnosis of personality disorder: Perennial issues and an emerging reconceptualization. Annual Review of Psychology, 58, 227–257.

    Article  PubMed  Google Scholar 

  • Cloninger, C. R., Svarakic, R., Dragan, M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975–990.

    Article  PubMed  Google Scholar 

  • Collier, A. D., & Echevarria, D. J. (2013). The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behavioural Pharmacology, 24, 375–383.

    Article  PubMed  Google Scholar 

  • Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B., & Sih, A. (2011). Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. Joural of Fish Biology, 78, 395–435.

    Article  Google Scholar 

  • Cook, E. H. E., & Scherer, S. W. S. (2008). Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919–923.

    Article  PubMed  Google Scholar 

  • Costa, P. T., Jr., & McCrae, R. R. (1992). NEO-PI-R: NEO personality inventory-revised. In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The SAGE handbook of personality theory and assessment: personality measurement and testing, volume 2 (pp. 179–198). Great Britian: The Cromwell Press Ltd.

    Google Scholar 

  • Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R., & Pravosudov, V. V. (2015). Heritability and the evolution of cognitive traits. Behavioral Ecology, 00(00), 1–13.

    Google Scholar 

  • Dadda, M., Domenichini, A., Piffer, L., Argenton, F., & Bisazza, A. (2010). Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behavioral Brain Research, 206, 208–215.

    Article  Google Scholar 

  • Danner, D. D., Snowdon, D. A., & Friesen, W. V. (2001). Positive emotions in early life and longevity: Findings from the nun study. Personality Processes and Individual Differences, 85, 804–813.

    Google Scholar 

  • Dawis, R. V. (1992). The individual differences tradition in counseling psychology. Journal of Counseling Psychology, 39, 7–19.

    Article  Google Scholar 

  • Deary, I. J., Weiss, A., & Batty, G. D. (2010). Intelligence and personality as predictors of illness and death: How researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychological Science in the Public Interest, 11, 53–79. doi:10.1098/rspb.2008.1555.

    Article  PubMed  Google Scholar 

  • Dingemanse, N. J., der Plas, F. V., Wright, J., Reale, D., Schrama, M., Roff, D. A., … Barber, I. (2009). Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proceedings of the Royal Society of London B: Biological Sciences, rspb-2008, 276, 1285–1293.

    Google Scholar 

  • Dingemanse, N. J., & Reale, D. (2005). Natural selection and animal personality. Behavior, 142, 1159–1184.

    Article  Google Scholar 

  • Dolan-Sewell, R. T., Krueger, R. F., & Shea, M. T. (2001). Co-occurrence with syndrome disorders. In W. J. Livesley (Ed.), Handbook of personality disorders. New York: Guilford Press.

    Google Scholar 

  • Driscoll, P., & Bättig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In I. Lieblich (Ed.), Genetics of the brain (pp. 96–123). Amsterdam: Elevier.

    Google Scholar 

  • Driscoll, P., Fernández-Teruel, A., Corda, M. G., Giorgi, O., & Steimer, T. (2009). Some guidelines for defining personality differences in rats. In Y. K. Kim (Ed.), Handbook of behavior genetics (pp. 281–300). New York: Springer.

    Chapter  Google Scholar 

  • Dugatkin, L. A., & Godin, J.-G. (1992). Prey approaching predators: A cost-benefit perspective. Annales Zoologici Fennici, 29, 233–252.

    Google Scholar 

  • Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., et al. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nature Genetics, 12, 78–80.

    Article  PubMed  Google Scholar 

  • Egan, R. J., Bergner, C. L., Hart, P. C., Cachat, J. M., Canavello, P. R., Elegante, M. F., et al. (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, 205, 38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.

    Google Scholar 

  • Fleeson, W., & Gallagher, M. P. (2009). The implications of the big-five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. Journal of Personal and Social Psychology, 97, 1097–1114.

    Article  Google Scholar 

  • Frazer, A., & Morilak, D. A. (2005). What should animal models of depression model? Neuroscience & Biobehaivoral Reviews, 29, 515–523.

    Article  Google Scholar 

  • Friedman, H. S., Tucker, J. S., Schwartz, J. E., Tomlinson-Keasey, C., Martin, L. R., Wingard, D. L., et al. (1995). Psychosocial and behavioral predictors of longevity: The aging and death of the “Termites”. American Psychologist, 50, 69–78.

    Article  PubMed  Google Scholar 

  • Fullerton, J., Cubin, M., Tiwari, H., Wang, C., Bomhra, A., Davidson, S., et al. (2002). Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. American Journal of Human Genetics, 72, 879–890.

    Article  Google Scholar 

  • Garner, J. P. (2014). The significance of meaning: Why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR Journal, 55, 438–456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier, J., Champagne, N., Lafreniere, R. G., Xiong, L., Spiegelman, D., Brustein, E., et al. (2010). De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences, 107, 7863–7868.

    Article  Google Scholar 

  • Gerlai, R. (2003). Zebra fish: An uncharted behavior genetic model. Behavior Genetics, 33, 462–468.

    Article  Google Scholar 

  • Gerlai, R., Lahav, M., Guo, S., & Rosenthal, A. (2000). Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacology, Biochemistry and Behavior, 67, 773–782.

    Article  PubMed  Google Scholar 

  • Goldberg, L. R. (1990). An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology, 59, 1216.

    Article  PubMed  Google Scholar 

  • Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127, 45–86.

    Article  PubMed  Google Scholar 

  • Gray, J. A. (1970). The psychophysiological basis of introversion–extraversion. Behaviour Research and Therapy, 8, 249–266.

    Article  PubMed  Google Scholar 

  • Griffiths, B. B., Schoonheim, P. J., Ziv, L., Voelker, L., Baier, H., & Gahtan, E. (2012). A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Frontiers in Behavioral Neuroscience, 6(68), 1–10.

    Google Scholar 

  • Grossman, L., Stewart, A., Gaikwad, S., Utterback, E., Wu, N., DiLeo, J., et al. (2011). Effects of piracetam on behavior and memory in adult zebrafish. Brain Research Bulletin, 85, 58–63.

    Article  PubMed  Google Scholar 

  • Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K. M., Suciu, C., et al. (2010). Characterization of behavioral and endocrine effects of LSD on zebrafish. Behavioural Brain Research, 214, 277–284.

    Article  PubMed  Google Scholar 

  • Harkness, A. R., & Lilienfield, S. O. (1997). Individual differences science for treatment planning: Personality traits. Psychological Assessments, 9, 349–360.

    Article  Google Scholar 

  • Hermes, G. L., Delgado, B., Tretiakova, M., Cavigelli, S. A., Krausz, T., Conzen, S. D., et al. (2009). Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proceedings of the National Academy of Sciences, 106, 22393–22398.

    Article  Google Scholar 

  • Howe, D., Bradford, Y. M., Conlin, T., Eagle, A. E., Fashena, D., Frazer, K., et al. (2013a). ZFIN, the zebrafish model organism database: Increased support for mutants and transgenics. Nucleic Acids Research, 41, 854–860.

    Article  Google Scholar 

  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., et al. (2013b). The zebrafish reference genome sequence and its relation to the human genome. Nature, 496, 498–503. doi:10.1038/nature12111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howell, K. R., Kutiyanawalla, A., & Pillai, A. (2011). Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex. PLoS ONE, 6(5), e20198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalueff, A. V., Gebhardt, M., Stewart, A., Cachat, J. M., Brimmer, M., Chawla, J. S., et al. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10, 70–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalueff, A. V., Stewart, A., Kyzar, E., Cachat, J. M., Gebhardt, M., Landsman, S., et al. (2012). Time to recognize zebrafish ‘affective’ behavior. Behaviour, 149, 1019–1036.

    Article  Google Scholar 

  • Kamphuis, J. H., & Noordhof, A. (2009). On categorical diagnoses in DSM–V: Cutting dimensions at useful points? Psychological Assessment, 21, 294–301.

    Article  PubMed  Google Scholar 

  • Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., et al. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23, 925–935.

    Article  PubMed  Google Scholar 

  • Krishnan, V., & Nestler, E. J. (2011). Animal models of depression: Molecular perspectives. Current Topics in Behavioral Neuroscience, 7, 121–147.

    Article  Google Scholar 

  • Krueger, R. F., & Eaton, N. R. (2010). Personality traits and the classification of mental disorders: Toward a more complete integration in dsm-5 and an empirical model of psychopathology. Personality Disorders: Theory, Research, and Treatment, 1, 97–118.

    Article  Google Scholar 

  • Lange, M., Neuzeret, F., Fabreges, B., Froc, C., Bedu, S., Bally-Cuif, L., et al. (2013). Inter-individual and inter-strain variations in zebrafish locomotor ontogeny. PLoS ONE, 8, e70172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laplana, M., Royo, J. L., Garcia, L. F., Aluja, A., Gomez-SKarmeta, J. L., & Fibla, J. (2014). SIRPB1 copy-number polymorphism as candidate quantitative trait locus for impulsive-disinhibited personality. Genes, Brain and Behavior, 13, 653–662.

    Article  Google Scholar 

  • Larstone, R. M., Jang, K. L., Livesley, J., Vernon, P. A., & Wolf, H. (2002). The relationship between Eysenck’s P-E-N model of personality, the five-factor model of personality, and traits delineating personality dysfunction. Personality and Individual Differences, 33, 25–37.

    Article  Google Scholar 

  • Lubinski, D. (2000). Scientific and social significance of assessing individual differences: “Sinking shafts at a few critical points”. Annual Reviews in Psychology, 51, 405–444.

    Article  Google Scholar 

  • Magid, V., MacLean, M. G., & Colder, C. R. (2007). Differentiating between sensation seeking and impulsivity through their mediated relations with alcohol use and problems. Addictive Behaviors, 21, 2046–2061.

    Article  Google Scholar 

  • Magurran, A. E. (1986). Predator inspection behaviour in minnow shoals: Differences between populatios and individuals. Behavioral Ecology and Sociobiology, 19, 267–273.

    Article  Google Scholar 

  • Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.

    Article  PubMed  Google Scholar 

  • McAdams, D. P. (2015). Three lines of personality development: A conceptual itinerary. European Psychologist, 20, 252–264.

    Article  Google Scholar 

  • McAdams, D. P., & Pals, J. L. (2006). A new big five: fundamental principles for an integrative science of personality. American Psychologist, 61(3), 204–217.

    Google Scholar 

  • McCrae, R. R., & Costa, P. T., Jr. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52, 81–90.

    Article  PubMed  Google Scholar 

  • McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60, 175–215.

    Article  PubMed  Google Scholar 

  • McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes, Brain and Behavior, 7, 152–163.

    Article  Google Scholar 

  • McTighe, S. M., Neal, S. J., Lin, Q., Hughes, Z. A., & Smith, D. G. (2013). The btbr mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS ONE, 8, 62189.

    Article  Google Scholar 

  • Mehta, P. H., & Gosling, S. D. (2008). Bridging human and animal research: a comparative approach to studies of personality and health. Brain Behavior and Immunity, 22, 651–661.

    Google Scholar 

  • Meltzoff, A. N. (1999). Origins of the theory of mind, cognition, and communication. Journal of Communication Disorders, 32, 251–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miklosi, A., & Andrew, R. J. (2006). The zebrafish as a model for behavioral studies. Zebrafish, 3(2), 227–234.

    Article  PubMed  Google Scholar 

  • Moretz, J. A., Martins, E. P., & Robinson, B. D. (2007a). Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behavioral Ecology, 18, 556–562.

    Article  Google Scholar 

  • Moretz, J. A., Martins, E. P., & Robinson, B. D. (2007b). The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environmental Biology of Fishes, 80, 91–101.

    Article  Google Scholar 

  • Norton, W., & Bally-Cuif, L. (2010). Adult zebrafish as a model organism for behavioural genetics. BMC Neuroscience, 11(1), 1–11.

    Article  Google Scholar 

  • Oliveira, R. F., Silva, R. H., & Simoes, J. M. (2011). Fighting zebrafish: Characterization of aggressive behavior and winner-loser effects. Zebrafish, 8, 74–81.

    Article  Google Scholar 

  • Olivier, B., & Young, L. J. (2002). Animal models of aggression. In K. L. Davis, D. Charney, J. T. Coyle, & C. Nemeroff (Eds.), Neuropsychopharmacology: The fifth generation of progress (pp. 1699–1708). Philadelphia: Lippincott, Williams and Wilkins.

    Google Scholar 

  • Ozer, D. J., & Benet-Martinez, V. (2006). Personality and the prediction of consequential outcomes. Annual Review of Psychology, 57, 401–421.

    Article  PubMed  Google Scholar 

  • Perona, M. T. G., Waters, S., Hall, F. S., Sora, I., Lesch, K.-P., Murphy, D. L., et al. (2008). Animal models of depression in dopamine, serotonin, and norepinepherine transporter knockout mice: Prominent effects of dopamine transporter deletions. Behavioural Pharmacology, 19, 566–574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham, M., Raymond, J., Hester, J., Kyzar, E., Gaikwad, S., Bruce, I., … & Zapolsky, I. (2012). Assessing social behavior phenotypes in adult zebrafish: shoaling, social preference, and mirror biting tests. In A. V. Kalueff & A. M. Stewart (Eds.) Zebrafish protocols for neurobehavioral research (pp. 231–246). New York, NY: Humana Press.

    Google Scholar 

  • Pitcher, T. J. (1983). Heuristic definitions of fish shoaling behavior. Animal Behaviour, 31, 611–612.

    Article  Google Scholar 

  • Plaut, I. (2000). Effects of fin size on swimming performace, swimming behaviour and routine activity of zebrafish danio rerio. The Journal of Experimental Biology, 203, 813–820.

    Google Scholar 

  • Porsolt, R. D. (2000). Animal models of depression: Utility for transgenic research. Reviews in the Neurosciences, 11, 53–58.

    Article  PubMed  Google Scholar 

  • Reale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291–318.

    Article  PubMed  Google Scholar 

  • Riehl, R., Kyzar, E., Allain, A., Green, J., Hook, M., Monnig, L., et al. (2011). Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicology and Teratology, 33, 658–667.

    Article  PubMed  Google Scholar 

  • Roberts, B. W., Kuncel, N. R., Shiner, R. L., Caspi, A., & Goldberg, L. R. (2007). The power of personality: The comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspectives on Psychological Science, 2, 313–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruhl, N., & McRobert, S. P. (2005). The effect of sex and shoal size on shoaling behaviour in Danio rerio. Journal of Fish Biology, 67, 1318–1326.

    Article  Google Scholar 

  • Sagvolden, T. (2000). Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience & Biobehavioral Reviews, 24(1), 31–39. doi:10.1016/S0149-7634(99)00058-5.

  • Sailer, C. D., Radenic, S. J., & Wisenden, B. D. (2012). A method for sorting zebrafish on the exploratory-boldness behavioral axis. In A. V. Kalueff & A. M. Stewart (Eds.) Zebrafish protocols for neurobehavioral research (pp. 145–151). New York, NY: Humana Press.

    Google Scholar 

  • Sallinen, J., Haapalinna, A., Viitamaa, T., Kobilka, B. K., & Scheinin, M. (1998). Adrenergic alpha2-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. Journal of Neuroscience, 18, 3035–3042.

    PubMed  Google Scholar 

  • Saverino, C., & Gerlai, R. (2008). The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behavioral Brain Research, 191, 77–87.

    Article  Google Scholar 

  • Seguret, A., Collignon, B., & Halloy, J. (2016). Strain differences in the collective behaviour of zebrafish (Danio rerio) in heterogenous environment. arXiv preprint arXiv, 1602.00024.

    Google Scholar 

  • Seligman, M. E., Rosellini, R. A., & Kozak, M. J. (1975). Learned helplessness in the rat: time course, immunization, and reversibility. Journal of Comparative and Physiological Psychology, 88, 542–547.

    Google Scholar 

  • Shaklee, A. B. (1963). Comparative studies of temperament: Fear responses in different species of fish. The Journal of Genetic Psychology: Research and Theory on Human Development, 102, 295–301.

    Article  Google Scholar 

  • Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioural syndromes: An ecological and evolutionary overview. Trends in Ecology & Evolution, 19, 372–378.

    Article  Google Scholar 

  • Sison, M., & Gerlai, R. (2011). Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behavioural Brain Research, 220, 331–337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slattery, D. A., & Cryan, J. F. (2014). The ups and downs of modelling mood disorders in rodents. ILAR Journal, 55, 297–309.

    Article  PubMed  Google Scholar 

  • Slattery, D. A., Neumann, I. D., & Cryan, J. F. (2011). Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. Journal of Psychopharmacology, 25, 1295–1303.

    Article  PubMed  Google Scholar 

  • Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8, 383–395.

    PubMed  PubMed Central  Google Scholar 

  • Sorge, R. E., Martin, L. J., Isbester, K. A., Sotocinal, S. G., Rosen, S., Tuttle, A. H., et al. (2014). Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods, 11, 629–632.

    Article  PubMed  Google Scholar 

  • Spence, R., Gerlach, G., Lawrence, C., & Smith, C. T. (2008). The behaviour and ecology of the zebrafish Danio rerio. Biological Reviews, 83, 13–34.

    Article  PubMed  Google Scholar 

  • Stamps, J., & Groothuis, T. G. G. (2010). The development of animal personality: Relevance, concepts and perspectives. Biological Reviews, 85, 301–325.

    Article  PubMed  Google Scholar 

  • Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A. V. (2014). Zebrafish models for translational neuroscience research: From tank to bedside. Trends in Neurosciences, 37, 264–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, A. M., Gaikwad, S., Kyzar, E., Green, J., Roth, A., & Kalueff, A. V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 62, 135–143.

    Article  PubMed  Google Scholar 

  • Stewart, A. M., Nguyen, M., Wong, K., Poudel, M. J., & Kalueff, A. V. (2013). Developing zebrafish models of autism spectrum disorder (ASD). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 50, 27–36.

    Article  PubMed  Google Scholar 

  • Stewart, A. M., Wong, K., Cachat, J. M., Gaikwad, S., Kyzar, E., Wu, N., et al. (2011). Zebrafi sh models to study drug abuse-related phenotypes. Reviews in the Neurosciences, 22, 95–105.

    Article  PubMed  Google Scholar 

  • Tran, S., & Gerlai, R. (2013). Individual differences in activity levels in zebrafish (Danio rerio). Behavioral Brain Research, 257, 224–229.

    Article  Google Scholar 

  • Vignet, C., Begout, M.-L., Pean, S., Lyphout, L., Leguay, D., & Cousin, X. (2013). Systematic screening of behavioral responses in two zebrafish strains. Zebrafish, 10, 365–375.

    Article  PubMed  Google Scholar 

  • Viken, R. J., Rose, R. J., Kaprio, J., & Koskenvuo, M. (1994). A developmental genetic analysis of adult personality: Extraversion and neuroticism from 18 to 59 years of age. Journal of Personal and Social Psychology, 66, 722–730.

    Article  Google Scholar 

  • White, R. M., Sessa, A., Burke, C., Bowman, T., & LeBlanc, J. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2, 183–189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669–689.

    Article  Google Scholar 

  • Widiger, T. A., & Samuel, D. B. (2005). Diagnostic categories or dimensions? A question for the diagnostic and statistical manual of mental disorders—Fifth edition. Journal of Abnormal Psychology, 114, 494–504.

    Article  PubMed  Google Scholar 

  • Wiggins, J. S. (2003). Paradigms of personality assessment. New York: Guilford Press.

    Google Scholar 

  • Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs i young children’s understanding of deception. Cognition, 13, 103–128.

    Article  PubMed  Google Scholar 

  • Wisenden, B. D., Sailer, C. D., Radenic, S. J., & Sutrisno, R. (2011). Maternal inheritance and exploratory-boldness behaviourl syndrome in zebrafish. Behaviour, 148, 1443–1456.

    Article  Google Scholar 

  • Wong, K., Elegante, M. F., Bartels, B. K., Elkhayat, S. I., Tien, D., Roy, S., et al. (2010). Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behavioural Brain Research, 208, 450–457.

    Article  PubMed  Google Scholar 

  • Wright, D., Nakamichi, R., Krause, J., & Butlin, R. K. (2006). QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behavior Genetics, 36, 271–284.

    Article  PubMed  Google Scholar 

  • Wright, D., Rimmer, L. B., Pritchard, V. L., Krause, J., & Butlin, R. K. (2003). Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). The Science of Nature, 90, 374–377.

    Article  PubMed  Google Scholar 

  • Zhou, Q. G., Zhu, L. J., Wu, H. Y., Luo, C. X., Chang, L., & Zhu, D. Y. (2011). Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. Journal of Neuroscience, 31, 7579–7590.

    Article  PubMed  Google Scholar 

  • Ziv, L., Muto, A., Schoonheim, P. J., Meijsing, S. H., Strasser, D., Ingraham, H. A., et al. (2012). An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry, 18, 1–11.

    Google Scholar 

  • Zuckerman, M. (1996). The psychological model for impulsive unsocialized sensation seeking: A comparative approach. Neuropsychobiolgy, 34, 125–129.

    Article  Google Scholar 

  • Zuckerman, M., & Cloninger, C. R. (1996). Relationships between Cloninger’s, Zuckerman’s, and Eysenck’s dimensions of personality. Personality and Individual Differences, 21, 283–285.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Echevarria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, K.M., Echevarria, D.J. (2017). Feeling Fishy: Trait Differences in Zebrafish (Danio Rerio). In: Vonk, J., Weiss, A., Kuczaj, S. (eds) Personality in Nonhuman Animals. Springer, Cham. https://doi.org/10.1007/978-3-319-59300-5_6

Download citation

Publish with us

Policies and ethics