Skip to main content

Microbes: “A Tribute” to Clean Environment

  • Chapter
  • First Online:
Paradigms in Pollution Prevention

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Due to industrial development, the amount and variety of hazardous substances added to the environment has increased drastically. Bioremediation is the process of using microorganisms or other life forms to consume and breakdown environmental pollutants in comparatively safe products. Because bacteria have a fast rate of population growth and are constantly evolving, they can adapt to live off materials and chemicals that are normally poisonous to other species. Some bacteria can remove chlorine from carcinogenic materials, digest pesticides, and have the ability to decolorize various xenobiotic dyes through microbial metabolism. Other microbes used for biological decolorization are red yeasts like Rhodotorula rubra , Cyathus bulleri, Cunninghamella elegans, and Phanerochaete chrysosporium, Actinobacteria, Cyanobacteria, Flavobacteria, Deinococcus-thermus, Thermotogae, Firmicutes, Staphylococcus, and Proteobacteria. Construction of strains with broad spectrum of catabolic potential with heavy metal-resistant traits makes them ideal for bioremediation of polluted environments in both aquatic and terrestrial ecosystems. The transfer of genetic traits from one organism to another paves way in creating Genetically Engineered Microorganisms (GEMs) for combating pollution in extreme environments making it a boon to mankind by cleaning up the mess that has created in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adisesh A, Murphy E, Barber CM et al (2011) Occupational asthma and rhinitis die to detergent enzymes in healthcare. Occup Med 61(5):364–369

    Article  CAS  Google Scholar 

  • Agrawal N, Shahi SK (2015) An environmental cleanup strategy-microbial transformation of xenobiotic compounds. Int J Curr Microbiol App Sci 4(4):429–461

    Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–406

    Article  CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J et al (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  CAS  Google Scholar 

  • Barton LL, Hamilton WA (2007) Sulphate reducing bacteria: environmental and engineered system. Cambridge University Press, Cambridge, p 558

    Book  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK et al (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brim H, Venkateshwaran A, Kostandarithes HM et al (2003) Engineering Deinococcus geothermalis for bioremediation of high temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM et al (2006) Deinococcus radiodurans engineered for complete toluene degradation facilities Cr(IV) reduction. Microbiology 152:2469–2477

    Article  CAS  Google Scholar 

  • Bruschi M, Goulhen F (2006) New bioremediation technologies to remove heavy metals and radionuclides using Fe(III)-sulfate- and sulfur reducing bacteria. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 35–55

    Google Scholar 

  • Cai M, Yao J, Yang H et al (2013) Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field. Bioresour Technol 144:100–106

    Article  CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metals detoxification and homeostatis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151:185–193

    Article  CAS  Google Scholar 

  • D’Annibale A, Leonardi V, Federici E et al (2007) Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Appl Microbiol Biotechnol 74:1135–1144

    Article  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16(1) of Directive 89/391/EEC). OJ L 262, 1710.2000, pp 21–45

    Google Scholar 

  • Divya B, Kumar DM (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79

    CAS  Google Scholar 

  • Dixit R, Wasiullah, Malaviya D et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Essa AMM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:672–674

    Article  CAS  Google Scholar 

  • Fang LC, Huang QY, Wei X et al (2010) Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresour Technol 101:5774–5779

    Article  CAS  Google Scholar 

  • Fulekar MH (2009) Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Romanian Biotechnol Lett 14(6):4900–4905

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Gelmetti C (2008) Local antibiotics in dermatology. Dermatol Ther 21:187–195

    Article  Google Scholar 

  • Gómez Jiménez-T R, Moliternib E, Rodríguezb L et al (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Environ Sci 9:54–59

    Article  Google Scholar 

  • Guiné V, Spadini L, Sarret G et al (2006) Zinc sorption to three Gram-negative bacteria: combined titration, modeling and EXAFS study. Environ Sci Technol 40:1806–1813

    Article  Google Scholar 

  • Hara H, Eltis LD, Davies JE et al (2007) Transcriptomic analysis reveals a bifurcated terepthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Javed S et al (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9(31):4836–4844

    CAS  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  Google Scholar 

  • Jayasekara R, Harding I, Bowater I et al (2005) Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13(3):231–250

    Article  CAS  Google Scholar 

  • Kelly DJA, Budd K, Lefebvre DD (2006) The biotransformation of mercury in pH-stat cultures of micro-fungi. Can J Bot 84:254–260

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  • Kumar BL, Gopal DVR (2015) Effective role of indigenous microorganisms for sustainable environment. Biotech 5:867–876

    Google Scholar 

  • Kyrikou J, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Nazaroff WW, Weschler CJ (2004) Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos Environ 38:2841–2865

    Article  CAS  Google Scholar 

  • OECD (2015) Biosafety and the environmental uses of micro-organisms: conference proceedings. OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264213562-en

  • Penny C, Vuilleumier S, Bringel F (2010) Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol 74:257–275

    Article  CAS  Google Scholar 

  • Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microorganisms and metal pollution. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic, London, p 55

    Google Scholar 

  • Rojas LA, Yanez C, Gonzalez M et al (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6:e17555

    Article  CAS  Google Scholar 

  • Sahrani FK, Ibrahim Z, Yahya A et al (2008) Isolation and identification of marine sulphate reducing bacteria, Desulfovibrio sp. and Citrobacter freundii from Pasir Gudang, Malaysia. Science 47:365–371

    Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  CAS  Google Scholar 

  • Schwarzenbach R, Egli T, Hofstetter TB et al (2010) Global water pollution and human health. Annu Rev Environ Res 35:109–136

    Article  Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  CAS  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1–6

    Google Scholar 

  • Sone Y, Mochizuki Y, Koizawa K et al (2013) Mercurial resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB Express 3:Article 41

    Article  Google Scholar 

  • Spök A (2009) Environmental, health and legal aspects of cleaners containing living microbes as active ingredients. IFZ–Inter-University Research Centre for Technology, Work and Culture Schlögelgasse 28010 Graz, Austria

    Google Scholar 

  • Talos K, Pager C, Tonk S et al (2009) Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ Sapientiae Agric Environ 1:20–30

    Google Scholar 

  • Tang CY, Criddle QS, Fu CS et al (2007) Effect of flux and technique. Biol Med 1(3):1–6

    Google Scholar 

  • Thavasi R (2011) Microbial biosurfactants: from an environment application point of view. J Bioremed Biodegr 2:Article 104e

    Article  Google Scholar 

  • Tigini V, Prigione V, Giansanti P et al (2010) Fungal biosorption, an innovative treatment for the decolourization and detoxification of textile effluents. Water 2:550–565

    Article  CAS  Google Scholar 

  • Van Agteren MH, Keuning S et al (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer, Dordrecht

    Book  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. J Biometals 18:121–129

    Article  CAS  Google Scholar 

  • Vishwanathan B (2009) Nanomaterials. Narosa Publishing House Pvt Ltd., New Delhi

    Google Scholar 

  • Wassenaar TM, Klein G (2008) Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J Food Prot 71:1734–1741

    Article  Google Scholar 

  • Wilson L, Bouwer E (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18:116–130

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A et al (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Xingzu W, Xiang C, Dezhi S et al (2008) Biodecolorization and partial mineralization of reactive black 5 by a strain of Rhodopseudomonas palustris. J Environ Sc 20:1218–1225

    Article  Google Scholar 

  • Xiuyan L, Ji Z, Jiandong J et al (2011) Biochemical degradation pathway of reactive blue 13 by Candida rugopelliculosa HXL-2. Int Biodeter Biodegr 65:135–141

    Article  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Ashok K. Chauhan, Founder President and Mr. Atul Chauhan, Chancellor, Amity University UP, Noida, India for the encouragement, research facilities, and financial support.

Conflict of interest: Authors hereby declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Gupta, C., Prakash, D., Gupta, S. (2018). Microbes: “A Tribute” to Clean Environment. In: Jindal, T. (eds) Paradigms in Pollution Prevention. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-58415-7_2

Download citation

Publish with us

Policies and ethics