Skip to main content

Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

The developmental program of roots is constantly modified according to environmental signals and often includes an elevation in the density of root hairs, which increases the root’s absorptive surface in an attempt to meet the ion and water demands of the plant. Root hairs emerge from certain epidermal cells and this depends on a complex genetic cascade. Once this has determined root hair cell fate, local wall loosening and turgor pressure initiate a bulge in the cell wall. The transition from root hair initiation to actual tip growth begins with the accumulation of secretory vesicles at the apical part of the bulge. A complex interplay between ion oscillations, cytoskeleton architecture, vesicle trafficking, cell wall metabolism and hormonal and environmental signals allows the root hair to maintain growth at the tip. This review summarizes the current knowledge on the core components regulating root hair tip growth, critically identifies challenges for future research and points to commonalities and differences with the current knowledge on pollen tube tip growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACA:

autoinhibited Ca2+-ATPase

ACT:

ACTIN

ADF:

actin-depolymerizing factor

AFs:

actin filaments

AHA:

Arabidopsis H+-ATPase

AIP1:

AKT1 INTERACTING PROTEIN PHOSPHATASE 1

ANX:

ANXUR

ARK1:

ARMADILLO REPEAT-CONTAINING KINESIN 1

ARP2/3 complex:

actin-related protein 2/3 complex

ATPase:

adenosine triphosphatase

ATSFH1:

ARABIDOPSIS THALIANA SHORT ROOT HAIR 1

AtSTP6:

ARABIDOPSIS THALIANA SUGAR TRANSPORTER 6

BAPTA:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

CA:

constitutively active

[Ca2+ cyt[:

cytoplasmic calcium concentration

[Ca2+ ER[:

endoplasmic reticulum calcium concentration

[Ca2+ ext[:

extracellular calcium concentration

CaM:

calmodulin

cAMP:

cyclic adenosine monophosphate

CAP1:

[CA2+]CYT-ASSOCIATED PROTEIN KINASE 1

CBLs:

calcineurin B-like proteins

CBM3a:

carbohydrate-binding module 3a

CDPK:

calcium-dependent protein kinase

CESA:

CELLULOSE SYNTHASE

CIPKs:

CBL-interacting protein kinases

[Cl cyt[:

chloride concentration cytoplasmic

CMLs:

calmodulin-like proteins

CMTs:

cortical microtubules

CNGC:

cyclic nucleotide-gated channel

cNMP:

cyclic nucleotide

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

CPK3:

CALCIUM-DEPENDENT PROTEIN KINASE 3

CRIB:

Cdc42- and Rac-interactive binding

CrRLK1Ls:

Catharanthus roseus RLK1-like kinases

CSC:

cellulose synthase complex

CSLD:

CELLULOSE SYNTHASE-LIKE D

CytB:

cytochalasin B

DACC:

depolarization-activated calcium channel

DCB:

2,6-dichlorobenzonitrile

DN:

dominant negative

DPI:

diphenyleneiodonium

ECA1:

ER-type Ca2+-ATPase

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EMTs:

endoplasmic microtubules

EXP7:

EXPANSIN7

F-actin:

filamentous actin

FER:

FERONIA

FH1 domain:

formin homology 1 domain

FH2 domain:

formin homology 2 domain

FRET:

Förster resonance energy transfer

G-actin:

globular actin

GAE6:

UDP-D-GLUCURONATE 4-EPIMERASE 6

GAP:

GTPase-activating protein

GDI:

guanosine nucleotide dissociation inhibitor

GDP:

guanosine diphosphate

GEF:

guanine nucleotide exchange factor

GFP:

green fluorescent protein

GLR:

glutamate receptor

GTP:

guanosine triphosphate

GTPase:

guanosine triphosphatase

HACC:

hyperpolarization-activated calcium channel

HAK5:

HIGH-AFFINITY K+ TRANSPORTER 5

HEK:

human embryonic kidney

HG:

homogalacturonan

IP3 :

inositol trisphosphate

LatB:

latrunculin B

LePT1:

Lycopersicon esculentum phosphate transporter 1

LRX1:

LEUCINE-RICH REPEAT/EXTENSIN 1

MAPK/MPK:

MITOGEN-ACTIVATED PROTEIN KINASE

MCA1/2:

MID1-COMPLEMENTING ACTIVITY 1/2

MICU:

mitochondrial Ca2+ uniporter

MOR1:

MICROTUBULE ORGANIZATION 1

MRH2:

MORPHOGENESIS OF ROOT HAIR 2

MSL2/3:

MSCS-LIKE 2/3

MT:

microtubules

MyoB1/2:

myosin-binding proteins 1/2

NHX1-4:

SODIUM HYDROGEN EXCHANGER 1-4

NOX:

NADPH oxidase

ORF:

open reading frame

OXI1:

OXIDATIVE SIGNAL-INDUCIBLE1

PH:

pleckstrin homology

pHcyt :

cytoplasmic pH

pHext :

extracellular pH

PIN2:

PIN-FORMED 2

PI-4Kβ1:

PHOSPHATIDYLINOSITOL 4-OH KINASE β1

PI-4P:

phosphatidylinositol 4-phosphate

PI(4,5)P2 :

phosphatidylinositol 4,5-biphosphate

Plus(+) end:

barbed actin filament end

PM:

plasma membrane

PME:

pectin methylesterase

PMEI:

pectin methylesterase inhibitor

prf1 :

profilin 1

PRONE:

plant-specific ROP nucleotide exchanger

PT:

pollen tube

qRT-PCR:

quantitative reverse transcriptase polymerase chain reaction

RabA4b:

RAB GTPASE HOMOLOGUE A4B

RBOH:

RESPIRATORY BURST OXIDASE HOMOLOGUE

RH:

root hair

RHD2:

ROOT HAIR DEFECTIVE 2

RHM1:

RHAMNOSE BIOSYNTHESIS 1

RHS:

root hair specific

RHS8:

ROOT HAIR SPECIFIC 8

RIC:

ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN

RIP:

ROP INTERACTIVE PARTNER

RLK:

receptor-like kinase

RNAi:

RNA interference

ROPs:

Rho-like GTPases from plants

ROS:

reactive oxygen species

SCN1:

SUPERCENTIPEDE1

SIMK:

STRESS-INDUCED MAPK

SLAH3:

SLAC1 HOMOLOGUE 3

SOD:

superoxide dismutase

TAIR:

The Arabidopsis Information Resource

TCH2:

TOUCH2

T-DNA:

transfer-DNA

TPC1:

TWO-PORE CHANNEL 1

UER1:

UDP-4-KETO-6-DEOXY-D-GLUCOSE-3,5-EPIMERASE-4-REDUCTASE 1

VGD1:

VANGUARD1

VLN:

VILLIN

WER:

WEREWOLF

XEH:

XYLOGLUCAN ENDOHYDROLASE

XTH:

XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE

XUT1:

XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE 1

XXT:

XYLOGLUCAN XYLOSYLTRANSFERASE

XyG:

xyloglucan

YC3.6:

Yellow Cameleon 3.6 (cytosolic calcium sensor)

YFP:

yellow fluorescent protein

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerman KEO, Moore AL (1983) Phosphate dependent, ruthenium red insensitive Ca2+ uptake in mung bean mitochondria. Biochem Biophys Res Commun 114:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Akkerman M, Franssen-Verheijen MAW, Immerzeel P, Hollander LD, Schel JH, Emons AM (2012) Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa. J Microsc 247:60–67

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J. 10:1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Allwood EG, Smertenko AP, Hussey PJ (2001) Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett 499:97–100

    Article  CAS  PubMed  Google Scholar 

  • Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK, Doonan JH, Weeds AG, Hussey PJ (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14:2915–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • An YQ, Huang S, McDowell JM, McKinney EC, Meagher RB (1996a) Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. Plant Cell 8:15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996b) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  CAS  PubMed  Google Scholar 

  • An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728

    Article  CAS  PubMed  Google Scholar 

  • Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23

    Article  CAS  PubMed  Google Scholar 

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft F, Gadsby D, Miller C (2009) Introduction. The blurred boundary between channels and transporters. Philos Trans R Soc Lond B Biol Sci 364:145–147

    Article  PubMed  Google Scholar 

  • Augustine RC, Pattavina KA, Tuzel E, Vidali L, Bezanilla M (2011) Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23:3696–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E (2012) Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J Exp Bot 63:241–249

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP (2014a) A receptor-like kinase mediates ammonium homeostasis and is important for the polar growth of root hairs in Arabidopsis. Plant Cell 26:1497–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai L, Zhou Y, Ma X, Gao L, Song CP (2014b) Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth. Plant Signal Behav 9:e29582

    Article  PubMed Central  CAS  Google Scholar 

  • Balcerowicz D, Schoenaers S, Vissenberg K (2015) Cell fate determination and the switch from diffuse growth to planar polarity in arabidopsis root epidermal cells. Front Plant Sci 6:1–13

    Article  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Betzner AS, Hoggart R, Cork A, Williamson RE (1992) Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol 19:427–437

    Article  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–338

    Article  CAS  Google Scholar 

  • Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev 15:1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JD, Takeda S, Borges F, Dolan L, Feijó JA (2014) Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biol 14:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–1180

    Article  CAS  PubMed  Google Scholar 

  • Bernal AJ, Yoo C-M, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sørensen I, Blancaflor EB, Scheller HV, Willats WG (2008) Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol 148:1238–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  CAS  PubMed  Google Scholar 

  • Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925–2934

    CAS  PubMed  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bischoff F, Vahlkamp L, Molendijk A, Palme K (2000) Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Mol Biol 42:515–530

    Article  CAS  PubMed  Google Scholar 

  • Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  CAS  PubMed  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boron AK, Van Orden J, Nektarios Markakis M, Mouille G, Adriaensen D, Verbelen JP, Höfte H, Vissenberg K (2014) Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana. J Exp Bot 65:5485–5495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell Online 17:3219–3226

    Article  CAS  Google Scholar 

  • Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    Article  PubMed  CAS  Google Scholar 

  • Bou Daher F, Van Oostende C, Geitmann A (2011) Spatial and temporal expression of actin depolymerizing factors ADF7 and ADF10 during male gametophyte development in Arabidopsis thaliana. Plant Cell Physiol 52:1177–1192

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Baluška F, Von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Hauslage J, Czogalla A, Limbach C (2004) Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids. Planta 219:379–388

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8:e1002446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Cárdenas L (2009) New findings in the mechanisms regulating polar growth in root hair cells. Plant Signal Behav 4:4–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Phys 146:1611–1621

    Article  CAS  Google Scholar 

  • Carol RJ, Dolan L (2002) Building a hair: tip growth in Arabidopsis thaliana root hairs. Philos Trans R Soc Lond B Biol Sci 357:815–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguéz-Léon J, Wu HM, Cheung AY, Feijó JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang M, Huang S (2015) Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. Plant J 83:515–527

    Article  CAS  PubMed  Google Scholar 

  • Chang F, Gu Y, Ma H, Yang Z (2013) AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant 6:1187–1201

    Article  CAS  PubMed  Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Cheung AY, Wu H (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase–regulated pollen tube growth. Society 15:237–249

    CAS  Google Scholar 

  • Cheung AY, Niroomand S, Zou Y, Wu H-M (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107:16390–16395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WG, Swanson SJ, Gilroy S (2012) High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J 70:118–128

    Article  CAS  PubMed  Google Scholar 

  • Choi W-G, Toyota M, Kim S-H, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111(17):6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:579–588

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cvrckova F, Novotny M, Pickova D, Zarsky V (2004) Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dadacz-Narloch B, Beyhl D, Larisch C, López-Sanjurjo EJ, Reski R, Kuchitsu K, Müller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23:2696–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206:225–233

    Article  CAS  PubMed  Google Scholar 

  • Day IS, Reddy VS, Ali GS, Reddy ASN (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3:10

    Article  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Deeks MJ, Cvrcková F, Machesky LM, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  CAS  PubMed  Google Scholar 

  • Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrcková F, Zársky V, Hussey PJ (2010) The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 123:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  CAS  PubMed  Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54:781–788

    Article  CAS  PubMed  Google Scholar 

  • Di Giorgio JP, Bienert GP, Ayub N, Yaneff A, Barberini ML, Mecchia MA, Amodeo G, Soto GC, Muschietti JP (2016) Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in Arabidopsis thaliana. Plant Cell 28(5):1053–1077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Diet A, Brunner S, Ringli C (2004) The enl mutants enhance the lrx1 root hair mutant phenotype of Arabidopsis thaliana. Plant Cell Physiol 45:734–741

    Article  CAS  PubMed  Google Scholar 

  • Diet A, Link B, Seifert GJ, Schellenberg B, Wagner U, Pauly M, Reiter WD, Ringli C (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase. Plant Cell 18:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieter P, Marmé D (1980) Ca2+ transport in mitochondrial and microsomal fractions from higher plants. Planta 150:1–8

    Article  CAS  PubMed  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Hong Y (2013) Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep 32:1715–1728

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Kost B, Xia G, Chua NH (2001a) Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Mol Biol 45:517–527

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001b) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  • Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Q, Kita D, Johnson E, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129

    PubMed  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci USA 110:8744–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emons AMC, van Maaren N (1987) Helicoidal cell-wall texture in root hairs. Planta 170:145–151

    Article  CAS  PubMed  Google Scholar 

  • Eng RC, Wasteneys GO (2014) The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell 26:3372–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Restrepo J, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA 91:8837–8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420

    Article  CAS  PubMed  Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, Zhang HY (2011) Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. J Plant Physiol 168:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijó J, Malho R, Pais M (1992) A cytochemical study on the role of atpases during pollen germination in Agapanthus umbellatus. Sex Plant Reprod 5:138–145

    Article  Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Felle HH (1994) The H+/Cl- symporter in root-hair cells of Sinapis alba (an electrophysiological study using ion-selective microelectrodes). Plant Physiol 106:1131–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol 3:577–591

    Article  CAS  Google Scholar 

  • Felle HH, Hepler PK (1997) The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 114:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q-N, Kang H, Song SJ, Ge FR, Zhang YL, Li E, Li S, Zhang Y (2016) Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiol 170:841–856

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong V (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fricker MD, White NS, Obermeyer G (1997) pH gradients are not associated with tip growth in pollen tubes of Lilium longiflorum. J Cell Sci 110:1729–1740

    CAS  PubMed  Google Scholar 

  • Frietsch S, Wang Y-F, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP gtpase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galway ME, Eng RC, Schiefelbein JW, Wasteneys GO (2011) Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth. Planta 233:985–999

    Article  CAS  PubMed  Google Scholar 

  • García-Hernández EDR, Cassab López GI (2005) Structural cell wall proteins from five pollen species and their relationship with boron. Braz J Plant Physiol 17:375–381

    Article  Google Scholar 

  • Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain J, Sun SJ, Dong JY, Liu H, Wang YF (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113:3096–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbon BC, Zonia LE, Kovar DR, Hussey PJ, Staiger CJ (1998) Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11:2349–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliland LU, Kandasamy MK, Pawloski LC, Meagher RB (2002) Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol 130:2199–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    Article  CAS  PubMed  Google Scholar 

  • Gjetting KSK, Ytting CK, Schulz A, Fuglsang AT (2012) Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63:3207–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  CAS  PubMed  Google Scholar 

  • Griessner M, Obermeyer G (2003) Characterization of whole-cell K + currents across the plasma membrane of pollen grain and tube protoplasts of Lilium longiflorum. J Membr Biol 193:99–108

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Li S, Lord E, Yang Z (2006) Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell 18:366–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Lu J, Xu J, McClure B, Zhang S (2014) Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol 165:528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gungabissoon RA, Jiang CJ, Drøbak BK, Maciver SK, Hussey PJ (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16:689–696

    Article  CAS  Google Scholar 

  • Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106(18):7648–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutermuth T, Lassig R, Portes M, Maierhofer T, Romeis T, Borst JW, Hedrich R, Feijó JA, Konrad KR (2013) Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20. Plant Cell 25:4525–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge J (1999) Free radical in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Hamam AM, Britto DT, Flam-Shepherd R, Kronzucker HJ (2016) Measurement of differential Na+ efflux from apical and bulk root zones of intact barley and Arabidopsis plants. Front Plant Sci 7:1–8

    Article  Google Scholar 

  • Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson JB, Malhotra SS, Stoner CD (1965) Action of calcium on corn mitochondrial. Plant Physiol 40:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan J, Hajduk P, Yoon H, Fesik S (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:168–170

    Article  CAS  PubMed  Google Scholar 

  • Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E (2005) Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol 46:782–789

    Article  CAS  PubMed  Google Scholar 

  • Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S (2010) A Rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 8(1):e1000282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He X, Liu YM, Wang W, Li Y (2006) Distribution of G-actin is related to root hair growth of wheat. Ann Bot 98:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heazlewood JL, Tonti-filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R, Marten I (2011) TPC1 - SV channels gain shape. Mol Plant 4:428–441

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32–38

    Article  CAS  PubMed  Google Scholar 

  • Herrmann A, Felle H (1995) Tip growth in root hair cells of Sinapis alba L.: significance of internal and external Ca2+ and pH. New Phytol 129:523–533

    Article  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  CAS  PubMed  Google Scholar 

  • Hohl M, Greiner H, Schopfer P (1995) The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell wall stiffening. Physiol Plant 94:491–498

    Article  CAS  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Holdaway-clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx 1 s delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong D, Jeon BW, Kim SY, Hwang JU, Lee Y (2015) The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytol 209(2):624–635

    Article  PubMed  CAS  Google Scholar 

  • van der Honing HS, Kieft H, Emons AMC, Ketelaar T (2012) Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol 158:1426–1438

    Article  PubMed  CAS  Google Scholar 

  • Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins or Arabidopsis thaliana. J Plant Res 125(1):147–153

    Article  CAS  PubMed  Google Scholar 

  • Huang S, McDowell JM, Weise MJ, Meagher RB (1996) The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol 111:115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SH, An Y-Q, McDowell JM, McKinney EC, Meagher RB (1997) The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol Biol 33:125–139

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Robinson RC, Gao LY, Matsumoto T, Brunet A, Blanchoin L, Staiger CJ (2005) Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell 17:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G-Q, Li E, Ge F-R, Li S, Wang Q, Zhang CQ, Zhang Y (2013a) Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200:1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Kim CM, Xuan YH, Liu J, Kim TH, Kim BK, Han CD (2013b) Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  CAS  PubMed  Google Scholar 

  • Hwang J-U, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized Rho GTPase-activating protein controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J-U, Wu G, Yan A, Lee YJ, Grierson CS, Yang Z (2010) Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J Cell Sci 123:340–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idilli A, Onelli E, Moscatelli A (2012) Low concentration of LatB dramatically changes the microtubule organization and the timing of vegetative nucleus/generative cell entrance in tobacco pollen tubes. Plant Signal Behav 7:947–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Lett 584:1982–1988

    Article  CAS  PubMed  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    Article  CAS  PubMed  Google Scholar 

  • Ivashuta S, Liu J, Lohar D (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:1–11

    Article  CAS  Google Scholar 

  • Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Shaff J, Kochian L (1995) Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. Planta 197:672–680

    Article  CAS  Google Scholar 

  • Jones MA, Shen J-J, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB (2001) One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13:1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, McKinney EC, Meagher RB (2002) Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell 13:251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, Burgos-Rivera B, McKinney EC, Ruzicka DR, Meagher RB (2007) Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. Plant Cell 19:3111–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, McKinney EC, Meagher RB (2009) A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21:701–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH Oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10(2):255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ketelaar T (2013) The actin cytoskeleton in root hairs: all is fine at the tip. Curr Opin Plant Biol 16:749–756

    Article  CAS  PubMed  Google Scholar 

  • Ketelaar T, Faivre-moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AM (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketelaar T, de Ruijter NCA, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol 14:145–149

    Article  CAS  PubMed  Google Scholar 

  • Ketelaar T, Allwood EG, Hussey PJ (2007) Actin organization and root hair development are disrupted by ethanol-induced overexpression of Arabidopsis actin interacting protein 1 (AIP1). New Phytol 174:57–62

    Article  CAS  PubMed  Google Scholar 

  • Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ (2010) Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell 22:2727–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer CS, Claes AR, Nzayisenga J-C, Pietra S, Stanislas T, Hüser A, Ikeda Y, Grebe M (2015) Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity. Development 142:151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijima ST, Hirose K, Kong SG, Wada M, Uyeda TQ (2016) Distinct biochemical properties of Arabidopsis thaliana actin isoforms. Plant Cell Physiol 57:46–56

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823:398–405

    Article  CAS  PubMed  Google Scholar 

  • Klahre U, Chua NH (1999) The Arabidopsis ACTIN-RELATED PROTEIN 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol 41:65–73

    Article  CAS  PubMed  Google Scholar 

  • Klahre U, Kost B (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18:3033–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahre U, Becker C, Schmitt AC, Kost B (2006) Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J 46:1018–1031

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Neuhaus G (2000) Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. Febs Lett 471:133–136

    Article  CAS  PubMed  Google Scholar 

  • Konrad KR, Wudick MM, Feijó JA (2011) Calcium regulation of tip growth: new genes for old mechanisms. Curr Opin Plant Biol 14:721–730

    Article  CAS  PubMed  Google Scholar 

  • Kost B (2010) Regulatory and cellular functions of plant RhoGAPs and RhoGDIs. In: Yalovsky S et al (eds) Integrated G proteins signaling in plants. Springer, Berlin, pp 27–48

    Chapter  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar DR, Pollard TD (2004) Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci USA 101:14725–14730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar DR, Kuhn JR, Tichy AL, Pollard TD (2003) The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J Cell Biol 161:875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhtreiber WM, Jaffe LF (1990) Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Kunz C, Chang A, Faure JD, Clarke AE, Polya GM, Anderson MA (1996) Phosphorylation of style S-RNases by Ca2+-dependent protein kinases from pollen tubes. Sex Plant Reprod 9:25–34

    Article  Google Scholar 

  • Kwak BH (1967) Studies on cellular site of calcium action in promoting pollen growth. Physiol Plant 20:825–833

    Article  Google Scholar 

  • Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27:1718–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landoni M, de Francesco A, Galbiati M, Tonelli C (2010) A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Mol Biol 74:235–247

    Article  CAS  PubMed  Google Scholar 

  • Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106

    Article  CAS  PubMed  Google Scholar 

  • Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17:947–952

    Article  CAS  PubMed  Google Scholar 

  • Le J, El-Assal SE-D, Basu D, Basu D, Saad ME, Szymanski DB (2003) Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr Biol 13:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  CAS  PubMed  Google Scholar 

  • Lemoine R, Bürkle L, Barker L, Sakr S, Kühn C, Regnacq M, Gaillard C, Delrot S, Frommer WB (1999) Identification of a pollen specific sucrose-transporter-like protein NtSUT3 from tobacco. FEBS Lett 454:325–330

    Article  CAS  PubMed  Google Scholar 

  • Lew RR (1996) Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. root hairs. Plant Physiol 112:1089–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11:1731–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Gu Y, Yan A, Lord E, Yang ZB (2008) RIP1 (ROP interactive partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol Plant 1:1021–1035

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H (2010) The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22:2710–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LJ, Ren F, Gao XQ, Wei PC, Wang XC (2013) The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ 36:484–497

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li JH, Wang W, Chen NZ, Ma TS, Xi YN, Zhang XL, Lin HF, Bai Y, Huang SJ, Chen YL (2014) ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. Plant, Cell Environ 37:1548–1560

    Article  CAS  Google Scholar 

  • Limonta M, Romanowsky S, Olivari C, Bonza MC, Luoni L, Rosenberg A, Harper JF, De Michelis MI (2014) ACA12 is a deregulated isoform of plasma membrane Ca2+-ATPase of Arabidopsis thaliana. Plant Mol Biol 84:387–397

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Choi HS, Cho HT (2011a) Root hair-specific expansin A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W-D, Liao Y-Y, Yang TJW, Pan CY, Buckhout TJ, Schmidt W (2011b) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol 155:1383–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, Scheres B, Fu Y, Yang Z (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22:1319–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol 23:290–297

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, Zalm E Van Der, Schopfer P (2004) Production of reactive oxygen intermediates (O2 •−, H2O2, and .OH) by maize roots and their role in wall loosening and elongation growth Plant Physiol 136:3114–3123

    Google Scholar 

  • Logan DC, Knight MR (2003) Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiol 133:21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lommel C, Felle HH (1997) Transport of Ca²+ across the tonoplast of intact vacuoles from Chenopodium album L. suspension cells : ATP-dependent import and inositol-1, 4, 5-trisphosphate-induced release. Planta 201(4):477–486

    Article  CAS  Google Scholar 

  • Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK (2006) Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of Lily. Plant Cell 18(9):2182–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovy-Wheeler A, Cárdenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton 64:217–232

    Article  PubMed  Google Scholar 

  • Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca N, León G (2012) Arabidopsis ACA7, encoding a putative auto-regulated Ca2+-ATPase, is required for normal pollen development. Plant Cell Rep 31:651–659

    Article  CAS  PubMed  Google Scholar 

  • Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3(5):reviews3007

    Google Scholar 

  • Madison SL, Buchanan ML, Glass JD, McClain TF, Park E, Nebenführ A (2015) Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169:1946–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mähs A, Steinhorst L, Han JP, Shen LK, Wang Y, Kudla J (2013) The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Mol Plant 6:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Malhó R (1998) Role of 1,4,5-inositol triphosphate-induced Ca2+ release in pollen tube orientation. Sex Plant Reprod 11:231–235

    Article  Google Scholar 

  • Malhó R, Trewavas A (1996) localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  PubMed  PubMed Central  Google Scholar 

  • Maris A, Suslov D, Fry SC, Verbelen JP, Vissenberg K (2009) Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot 60:3959–3972

    Article  CAS  PubMed  Google Scholar 

  • Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen JP, Vissenberg K (2011) Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. J Exp Bot 62:261–271

    Article  CAS  PubMed  Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Spielhofer P, Kost B, Chua N (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568

    CAS  PubMed  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Hülskamp M (2003a) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hülskamp M (2003b) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130:3137–3146

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996a) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell JM, Huang S, Mckinney EC, An YQ, Meagher RB (1996b) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney EC, Meagher RB (1998) Members of the Arabidopsis actin gene family are widely dispersed in the genome. Genetics 149:663–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney EC, Kandasamy MK, Meagher RB (2001) Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Plant Physiol 107:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg A, Blatt M (1995) NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J Membr Biol 145:49–66

    Article  CAS  PubMed  Google Scholar 

  • Messerli MA, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509

    CAS  PubMed  Google Scholar 

  • Messerli MA, Créton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98

    Article  CAS  PubMed  Google Scholar 

  • Michalak M, Groenendyk J, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  CAS  PubMed  Google Scholar 

  • Michard E, Dias P, Feijó JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21(3):169–181

    Article  CAS  Google Scholar 

  • Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622

    Article  CAS  PubMed  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    Article  CAS  PubMed  Google Scholar 

  • Michelli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  Google Scholar 

  • Michelot A, Guérin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L (2005) The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17:2296–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miedema H, Demidchik V, Véry AA, Bothwell JH, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179:378–385

    Article  CAS  PubMed  Google Scholar 

  • Miller DD, De Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Młodzińska E, Kłobus G, Christensen MD, Fuglsang AT (2015) The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol Plant 154:270–282

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104:20996–21001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monshausen GB, Messerli MA, Gilroy S (2008) Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol 147:1690–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro D, Liu Q, Lisboa S, Scherer GE, Quader H, Malhó R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 56:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Moriau L, Michelet B, Bogaerts P, Lambert L, Michel A, Oufattole M, Boutry M (1999) Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. Plant J 19:31–41

    Article  CAS  PubMed  Google Scholar 

  • Mouline K, Véry A-A, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucha E, Hoefle C, Hückelhoven R, Berken A (2010) RIP3 and AtKinesin-13A - a novel interaction linking Rho proteins of plants to microtubules. Eur J Cell Biol 89:906–916

    Article  CAS  PubMed  Google Scholar 

  • Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59:528–539

    Article  CAS  PubMed  Google Scholar 

  • Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: conservation and invention of regulators and effectors. Small GTPases 1:78–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newcomb EH (1965) Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J Cell Biol 27:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibau C, Cheung A (2011) New insights into the functional roles of CrRLKs in the control of plant cell growth and development. Plant Signal Behav 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibau C, Wu H ming, Cheung AY (2006) RAC/ROP GTPases: “hubs” for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Google Scholar 

  • Nishimura T, Yokota E, Wada T, Shimmen T, Okada K (2003) An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol 44:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant cell monographs, vol 5. Springer, Berlin pp 89–116

    Google Scholar 

  • Nissen KS, Willats WGT, Malinovsky FG (2016) Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci 21(6):516–527

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Shiina T (2014) Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol Plant 7:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56:319–327

    CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  • Oja V, Savchenko G, Jakob B, Heber U (1999) pH and buffer capacities of apoplastic and cytoplasmic cell compartments in leaves. Planta 209:239–249

    Article  CAS  PubMed  Google Scholar 

  • Ojangu EL, Järve K, Paves H, Truve E (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma 230:193–202

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Ravi H, Smith EM, Goode BL (2006) AIP1 and Cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments. Mol Biol Cell 17:2855–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono S, Mohri K, Ono K (2004) Microscopic evidence that Actin-interacting Protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound actin filaments. J Biol Chem 279:14207–14212

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-atpases. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX (2010) Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YB, Cosgrove DJ (2012) changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:465–475

    Article  CAS  PubMed  Google Scholar 

  • Park E, Nebenführ A (2013) Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 8:e76745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Szumlanski AL, Gu F, Guo F, Nielsen E (2011) A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat Cell Biol 13:973–980

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Du F, Zhang Y, He T, Ren H (2012) Control of the actin cytoskeleton in root hair development. Plant Sci 187:10–18

    Article  CAS  PubMed  Google Scholar 

  • Pena MJ, Kong Y, York WS, O’Neill MA (2012) A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell 24:4511–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Prokhnevsky AL, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Prokhnevsky AL, Dolja VV (2010) Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell 22:1883–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Klocko AL, Fowler JE, Dolja VV (2012) Arabidopsis Myosin XI-K Localizes to the Motile Endomembrane Vesicles Associated with F-actin. Front Plant Sci 3:1–10

    Article  Google Scholar 

  • Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV (2013) Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 25:3022–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertl H, Himly M, Gehwolf R, Kriechbaumer R, Strasser D, Michalke W, Richter K, Ferreira F, Obermeyer G (2001) Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+-ATPase during pollen grain germination and tube growth. Planta 213:132–141

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Nielsen O, Egel R, Hagan IM (1998) FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol 141:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  CAS  PubMed  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plieth C, Hansen UP (1998) Cytosolic Ca2+ and H+ buffers in green algae: a reply. Protoplasma 203:210–213

    Article  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients 1. Plant Physiol 129:786–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plieth C, Sattelmacher B, Hansen UP (1997) Cytoplasmic Ca2+-H+-exchange buffers in green algae. Protoplasma 198:107–124

    Article  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  PubMed  CAS  Google Scholar 

  • Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol 146:1358–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW, Broad LM, Braun FJ, Lievremont JP, Bird GS (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229

    CAS  PubMed  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qu HY, Shang ZL, Zhang SL, Liu LM, Wu JY (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol 174:524–536

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F (2015) CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol 169:2863–2873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rato C, Monteiro D, Hepler PK, Malhó R (2004) Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J 38:887–897

    Article  CAS  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E (2015) pH regulation by NHX-Type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell 27:1200–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    Article  CAS  PubMed  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringli C (2010) The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. Plant J 63:662–669

    Article  CAS  PubMed  Google Scholar 

  • Ringli C, Baumberger N, Diet A, Frey B, Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha AG, Vothknecht UC (2012) The role of calcium in chloroplasts-an intriguing and unresolved puzzle. Protoplasma 249:957–966

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rosales M, Roldan M, Belver A, Donaire J (1989) Correlation between in-vitro germination capacity and proton extrusion in olive pollen. Plant Physiol Biochem 27:723–728

    CAS  Google Scholar 

  • Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier MF (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119:419–429

    Article  CAS  PubMed  Google Scholar 

  • Rounds CM, Bezanilla M (2013) Growth mechanisms in tip-growing plant cells. Annu Rev Plant Biol 64:243–265

    Article  CAS  PubMed  Google Scholar 

  • Rounds CM, Lubeck E, Hepler PK, Winship LJ (2011) Propidium iodide competes with Ca2+ to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol 157:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Cristin J, Briskin D (1991) Characterization of a H+/NO3- symport associated with plasma membrane vesicles of maize roots using 36ClO3 as a radiotracer analog. Arch Biochem Biophys 285:74–82

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka DR, Kandasamy MK, McKinney EC, Burgos-Rivera B, Meagher RB (2007) The ancient subclasses of Arabidopsis Actin Depolymerizing Factor genes exhibit novel and differential expression. Plant J 52:460–472

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai T, Honing H Van Der, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171

    Google Scholar 

  • Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluska F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root hair cells of Arabidopsis thaliana. Planta 197:455–459

    Google Scholar 

  • Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol 103:979–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz-Starke J, Büttner M, Sauer N (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol 131:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönknecht G (2013) Calcium signals from the vacuole. Plants 2:589–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schopfer P (1996) Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199:43–49

    Article  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  CAS  PubMed  Google Scholar 

  • Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiol 46:598–608

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Hamatani M, Saito S, Yokota E, Mimura T, Fusetani N, Karaki H (1995) Roles of actin filaments in cytoplasmic streaming and organization of transvacuolar strands in root hair cells of Hydrocharis. Protoplasma 185:188–193

    Article  CAS  Google Scholar 

  • Shin DH, Cho MH, Kim TL, Yoo J, Kim JI, Han YJ, Song PS, Jeon JS, Bhoo SH, Hahn TR (2010) A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development. J Biol Chem 285:32151–32159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AMC (2002) Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiol 130:977–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon M, Bruex A, Kainkaryam RM, Zheng X, Huang L, Woolf PJ, Schiefelbein J (2013) Tissue-specific profiling reveals transcriptome alterations in Arabidopsis mutants lacking morphological phenotypes. Plant Cell 25:3175–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smertenko AP, Jiang CJ, Simmons NJ, Weeds AG, Davies DR, Hussey PJ (1998) Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14:187–193

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Sci 306:2206–2211

    Article  CAS  Google Scholar 

  • Song L-F, Zou J-J, Zhang WZ, Wu WH, Wang Y (2009) Ion transporters involved in pollen germination and pollen tube tip-growth. Plant Signal Behav 4:1193–1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhorst L, Kudla J (2014) Signaling in cells and organisms - calcium holds the line. Curr Opin Plant Biol 22C:14–21

    Article  CAS  Google Scholar 

  • Steinhorst L, Mähs A, Ischebeck T, Zhang C, Zhang X, Arendt S, Schültke S, Heilmann I, Kudla J (2015) Vacuolar CBL-CIPK12 Ca2+-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 25:1475–1482

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Li S, Xu J, Liu T, Shang Z (2009) H+-ATPase in the plasma membrane of Arabidopsis pollen cells is involved in extracellular calmodulin-promoted pollen germination. Prog Nat Sci 19:1071–1078

    Article  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanisms. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Sze H, Li X, Palmgren M (1999) Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell 11:677–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sze H, Frietsch S, Li X, Bock KW, Harper JF (2006) Genomic and molecular analyses of transporters in the male gametophyte. In: Plant cell monographs, vol 3. Springer, Berlin, pp 71–93

    Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  CAS  PubMed  Google Scholar 

  • Tao LZ, Cheung AY, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18

    Article  CAS  PubMed  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13:603–610

    Article  CAS  PubMed  Google Scholar 

  • Tholl S, Moreau F, Hoffmann C, Arumugam K, Dieterle M, Moes D, Neumann K, Steinmetz A, Thomas C (2011) Arabidopsis actin-depolymerizing factors (ADFs) 1 and 9 display antagonist activities. FEBS Lett 585:1821–1827

    Article  CAS  PubMed  Google Scholar 

  • Thomas MV (1982) Techniques in calcium research. Academic Press, New York

    Google Scholar 

  • Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    Article  CAS  PubMed  Google Scholar 

  • Timmers ACJ, Vallotton P, Heym C, Menzel D (2007) Microtubule dynamics in root hairs of Medicago truncatula. Eur J Cell Biol 86:69–83

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199:83–92

    Article  CAS  Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Nakamori R, Anson M, Shimmen T, Oiwa K (2012) Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J Biol Chem 287:30711–30718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91(phox)). Plant J 14:365–370

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (1999) Le calcium, c’est la vie: calcium makes waves. Plant Physiol 120:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas AJ, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Valenta R, Ferreira F, Grote M, Swoboda I, Vrtala S, Duchêne M, Deviller P, Meagher RB, McKinney E, Heberle-Bors E (1993) Identification of profilin as an actin-binding protein in higher plants. J Biol Chem 268:22777–22781

    CAS  PubMed  Google Scholar 

  • Van Bruaene N, Joss G, Van Oostveldt P (2004) Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiol 136:3905–3919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Gisbergen PAC, Bezanilla M (2013) Plant formins: membrane anchors for actin polymerization. Trends Cell Biol 23:227–233

    Article  PubMed  CAS  Google Scholar 

  • Van Sandt VST, Suslov D, Verbelen JP, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vassileva VN, Fujii Y, Ridge RW (2005) Microtubule dynamics in plants. Plant Biotechnol 22:171–178

    Article  CAS  Google Scholar 

  • Vazquez LA, Sanchez R, Hernandez-Barrera A, Zepeda-Jazo I, Sánchez F, Quinto C, Torres LC (2014) Actin polymerization drives polar growth in Arabidopsis root hair cells. Plant Signal Behav 9:e29401

    Article  PubMed Central  CAS  Google Scholar 

  • Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Gille S, Harholt J, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE, Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332:1401–1403

    Article  CAS  PubMed  Google Scholar 

  • Véry AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  PubMed Central  Google Scholar 

  • Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, Christensen AL, Justesen BH, Jørgensen IL, Schiller J, Hatzakis NS, Grabe M, Pomorski TG, Stamou D (2016) Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351:1469–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali L, Hepler P (1997) Characterization and localization of profiling in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton 36(4):323–338

    Article  CAS  PubMed  Google Scholar 

  • Vidali L, van Gisbergen P a C, Guérin C, Franco P, Li M, Burkart GM, Augustine RC, Blanchoin L, Bezanilla M (2009) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc Natl Acad Sci USA 106:13341–13346

    Google Scholar 

  • Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol 159:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, Fry SC (2000) In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12:1229–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissenberg K, Van Sandt V, Fry SC, Verbelen JP (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. J Exp Bot 54:335–344

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Füßl M, Doccula FG, Navazio L, Fricker MD, Van Aken O, Finkemeier I, Meyer AJ, Szabò I, Costa A, Schwarzländer M (2015) The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27:3190–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter N, Holweg CL (2008) Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells. BMC Plant Biol 8:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol 126:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang Y, Wu J, Meng L, Ren H (2013) At FH16, an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. J Integr Plant Biol 55:1002–1015

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Diao WZ, Yang X, Qiao Z, Wang M, Acharya BR, Zhang W (2015a) Arabidopsis thaliana CML25 mediates the Ca2+ regulation of K + transmembrane trafficking during pollen germination and tube elongation. Plant Cell Environ 38:2372–2386

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dindas J, Rienmüller F, Krebs M, Waadt R, Schumacher K, Wu WH, Hedrich R, Roelfsema MR (2015b) Cytosolic Ca2+ signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells. Mol Plant 8:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, Chen LM, Liu WX, Shen LK, Wang FL, Zhou Y, Zhang Z, Wu WH, Wang Y (2016) AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis. Plant Physiol 170:2264–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weerasinghe R, Collings D, Johannes E, Allen N (2003) The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs. Planta 218:276–287

    Article  CAS  PubMed  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  CAS  PubMed  Google Scholar 

  • Williamson RE, Burn JE, Birch R, Baskin TI, Arioli T, Betzner AS, Cork A (2001) Morphology of rsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215:116–127

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf S, Höfte H (2014) Growth control: a saga of cell walls, ros, and peptide receptors. Plant Cell 26:1848–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT (2009) Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol 150:1459–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Li H, Yang Z (2000) Arabidopsis RopGAPs are a novel family of Rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-specific GTPase stimulation. Plant Physiol 124:1625–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xu X, Li S, Liu T, Ma L, Shang Z (2007) Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca 2+-permeable channel. New Phytol 176:550–559

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shang Z, Wu J, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Qu H, Jin C, Shang Z, Wu J, Xu G, Gao Y, Zhang S (2011) cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia. Plant Cell Rep 30:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhao S, Tian H, He Y, Xiong W, Guo L, Wu Y (2013) CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells. J Exp Bot 64:3327–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudick MM, Feijó JA (2014) At the intersection: merging Ca2+ and ROS signalling pathways in pollen. Mol Plant 7:1595–1597

    Article  CAS  PubMed  Google Scholar 

  • Wymer C, Bibikova T, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439

    Article  CAS  PubMed  Google Scholar 

  • Yalovsky S, Bloch D, Sorek N, Kost B (2008) Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol 147:1527–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K, Iida H (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan A, Xu G, Yang ZB (2009) Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA 106:22002–22007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2008) Cell polarity signaling in Arabidopsis. Cell 24:551–575

    Google Scholar 

  • Yang G, Gao P, Zhang H, Huang S, Zheng ZL (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS One 2(10):e1074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W (2014) Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol 86:225–236

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21:3868–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H (2005) Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol 138:1071–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylstra B, Garrido D, Busscher J, van Tunen AJ (1998) Hexose transport in growing Petunia pollen tubes and characterization of a pollen-specific, putative monosaccharide transporter. Plant Physiol 118:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota E, Muto S, Shimmen T (1999) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119:231–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota E, Tominaga M, Mabuchi I, Tsuji Y, Staiger CJ, Oiwa K, Shimmen T (2005) Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. Plant Cell Physiol 46:1690–1703

    Article  CAS  PubMed  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabotina OA, Van De Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008) Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J 56:101–115

    Article  CAS  PubMed  Google Scholar 

  • Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012) Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant Physiol 159:1367–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, McCormick S (2007) A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, Huang S (2010) Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22:2749–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiao Y, Du F, Cao L, Dong H, Ren H (2011a) Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol 190:667–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D (2011b) RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23:681–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Xie Q, Robertson JB, Johnson CH (2012) pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH. PLoS One 7(8):e43072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ma H, Qi H, Zhao J (2014) Roles of hydroxyproline-rich glycoproteins in the pollen tube and style cell growth of tobacco (Nicotiana tabacum L.). J Plant Physiol 171:1036–1045

    Google Scholar 

  • Zhang S, Liu C, Wang J, Ren Z, Staiger CJ, Ren H (2016) A processive Arabidopsis formin modulates actin-filament dynamics in association with profilin. Mol Plant 9:900–910

    Article  CAS  PubMed  Google Scholar 

  • Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH (2013a) Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell 25:649–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Pan Z, Zhang Y, Qu X, Zhang Y, Yang Y, Jiang X, Huang S, Yuan M, Schumaker KS, Guo Y (2013b) The actin-related Protein2 / 3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. Plant Cell 25:4544–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Xie Y, Jiang Y, Qu X, Huang S (2013) Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25:3405–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Lan W, Jiang Y, Fang W, Luan S (2014) A calcium-dependent protein Kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant 7:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Lan W, Chen B, Fang W, Luan S (2015a) A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol 167:1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Shi H, Chen B, Zhang R, Huang S, Fu Y (2015b) Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth. Plant Cell 27:1140–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonia L, Cordeiro S, Feijó JA (2001) Ion dynamics and hydrodynamics in the regulation of pollen tube growth. Sex Plant Reprod 14:111–116

    Article  CAS  Google Scholar 

  • Zorec R, Tester M (1992) Cytoplasmic calcium stimulates exocytosis in a plant secretory cell. Biophys J 63:864–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zottini M, Zannoni D (1993) The use of Fura-2 fluorescence to monitor the movement of free calcium ions into the matrix of plant mitochondria (Pisum sativum and Helianthus tuberosus). Plant Physiol 102:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Vissenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schoenaers, S., Balcerowicz, D., Vissenberg, K. (2017). Molecular Mechanisms Regulating Root Hair Tip Growth: A Comparison with Pollen Tubes. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_9

Download citation

Publish with us

Policies and ethics