Skip to main content
Log in

Molecular cloning and characterization of a thermostable α-amylase exhibiting an unusually high activity

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

An α-amylase gene was cloned from the thermophilic bacterium Bacillus subtilis isolated from Indonesian oil palm shell waste. The gene expressed an extracellular enzyme. Optimal hydrolysis conditions for the enzyme were 70°C and pH 6.0. The specific activity of the enzyme was 16.0 kU per mg of protein, which was higher than for other thermostable amylases. Hydrolytic products of the enzyme using starch and glycogen were mainly maltohexaose and maltopentaose. The enzyme had a K m value of 0.099 mg/mL for amylopectin, more than 10 times lower than for amylose. The catalytic efficiency of the enzyme using amylopectin was 39,200 mL/mg·s and was 3,270 mL/mg·s using amylose. The enzyme liquefied corn starch at pH 5.0, which was successfully converted to glucose using commercial glucoamylase and pullulanase without pH adjustment. The enzyme has advantages for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316 (1991)

    CAS  Google Scholar 

  2. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345–351 (2002)

    Article  CAS  Google Scholar 

  3. Shaw A, Bott R, Day AG. Protein engineering of α-amylase for low pH performance. Curr. Opin. Biotechnol. 10: 349–352 (1999)

    Article  CAS  Google Scholar 

  4. Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C. Engineering the thermostability of Bacillus licheniformis alphaamylase. Biologia Bratisl. 57: 203–212 (2002)

    CAS  Google Scholar 

  5. Saito N. A thermophilic extracellular α-amylase from Bacillus licheniformis. Arch. Biochem. Biophys. 155: 290–298 (1973)

    Article  CAS  Google Scholar 

  6. Ben Ali M, Mezghani M, Bejar S. A thermostable α-amylase producing maltohexaose from a new isolated Bacillus sp. US100: Study of activity and molecular cloning of the corresponding gene. Enzyme Microb. Tech. 24: 584–589 (1999)

    Article  CAS  Google Scholar 

  7. De M, Das KP, Chakrabartty PK. Purification and characterization of alpha-amylase from Bacillus amyloliquefaciens NCIM 2829. Indian J. Biochem. Biophys. 42: 287–294 (2005)

    CAS  Google Scholar 

  8. Morgan FJ, Priest FG. Characterization of a thermostable α-amylase from Bacillus licheniformis NCIB 6346. J. Appl. Microbiol. 50: 107–114 (2008)

    Google Scholar 

  9. Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158: 652–662 (2009)

    Google Scholar 

  10. Asoodeh A, Chamani JK, Lagzian M. A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Int. J. Biol. Macromol. 46: 289–297 (2010)

    Article  CAS  Google Scholar 

  11. Lee JT, Kanai H, Kobayashi T, Akiba T, Kudo T. Cloning, nucleotide sequence, and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus. J. Ferment. Bioeng. 82: 432–438 (1996)

    Article  CAS  Google Scholar 

  12. Ben Ali M, Mhiri S, Mezghani M, Bejar S. Purification and sequence analysis of the atypical maltohexaose-forming α-amylase of the B. stearothermophilus US100. Enzyme Microb. Tech. 28: 537–542 (2001)

    Article  Google Scholar 

  13. Sumardi A, Suwanto M, Thenawidjaja, Purwadaria T. Isolation and characterization of mannanolytic thermophilic bacteria from palm oil shell and their mannanase enzyme production properties. Biotropia 25: 1–10 (2005)

    Google Scholar 

  14. Sumardi A, Suwanto M, Suhartono T, Purwadaria T. Purification and charaterization of extracellular β-mannanase from a thermophilic bacterium, Geobacillus stearothermophilus L-07. Microbiol. Indoens. 11: 57–62 (2006)

    Google Scholar 

  15. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor, New York, NY, USA (2001)

    Google Scholar 

  16. Lee CK, Le QT, Kim YH, Shim JH, Lee SJ, Park JH, Lee KP, Song SH, Auh JH. Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. J. Agr. Food Chem. 56: 126–131 (2007)

    Article  Google Scholar 

  17. Miller GL. Use of dinitrosalycylic acid reagent for determination reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  18. Fox JD, Robyt JF. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem. 195: 93–96 (1991)

    Article  CAS  Google Scholar 

  19. Li WF, Zhou XX, Lu P. Structural features of thermozymes. Biotechnol. Adv. 23: 271–281 (2005)

    Article  CAS  Google Scholar 

  20. Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H. Crystal structure of Bacillus stearothermophilus α-amylase: Possible factors determining the thermostability. J. Biochem. 129: 461–468 (2001)

    Article  CAS  Google Scholar 

  21. Vihinen M, Olikka P, Niskanen J, Meyer P, Suominen, II, Karp M, Holma L, Knowles J, Manstsala P. Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: Putative role of three conserved residues. J. Biochem. 107: 267–272 (1990)

    CAS  Google Scholar 

  22. Vihinen M, Peltonen T, Iitia A, Suominen I, Mantsala P. C-terminal truncations of a thermostable Bacillus stearothermophilus α-amylase. Protein Eng. Des. Sel. 7: 1255–1259 (1994)

    Article  CAS  Google Scholar 

  23. Ben Ali M, Khemakhem B, Robert X, Haser R, Bejar S. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain. Biochem. J. 394: 51–56 (2006)

    Article  CAS  Google Scholar 

  24. Khemakhem B, Ben Ali M, Aghajari N, Juy M, Haser R, Bejar S. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Biotechnol. Bioeng. 102: 380–389 (2009)

    Article  CAS  Google Scholar 

  25. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl. Environ. Microbiol. 61: 1502–1506 (1995)

    CAS  Google Scholar 

  26. Tanaka A, Hoshino E. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics. Biochem. J. 364: 635–639 (2002)

    Article  CAS  Google Scholar 

  27. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17–34 (2003)

    Article  CAS  Google Scholar 

  28. Lee S, Oneda H, Minoda M, Tanaka A, Inouye K. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis α-amylases and insights into engineering α-amylase variants active under acidic conditions. J. Biochem. 139: 997–1005 (2006)

    Article  CAS  Google Scholar 

  29. Janeček Š. How many conserved sequence regions are there in the α-amylase family? Biologia 57: 29–41 (2002)

    Google Scholar 

  30. Kandra L, Gyemant G, Remenyik J, Hovanszki G, Liptak A. Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett. 518: 79–82 (2002)

    Article  CAS  Google Scholar 

  31. Bijttebier A, Goesaert H, Delcour JA. Temperature impacts the multiple attack action of amylases. Biomacromolecules 8: 765–772 (2007)

    Article  CAS  Google Scholar 

  32. Khemakhem B, Ben Ali M, Aghajari N, Juy M, Haser R, Bejar S. The importance of an extra loop in the B-domain of an α-amylase from B. stearothermophilus US100. Biochem. Biophys. Res. Commun. 385: 78–83 (2009)

    Article  CAS  Google Scholar 

  33. Tomazic SJ, Klibanov AM. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem. 263: 3086–3091 (1988)

    CAS  Google Scholar 

  34. Bessler C, Schmitt J, Maurer KH, Schmid RD. Directed evolution of a bacterial α-amylase: Toward enhanced pH-performance and higher specific activity. Protein Sci. 12: 2141–2149 (2003)

    Article  CAS  Google Scholar 

  35. Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Oh BH, Park KH. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891–21897 (2002)

    Article  CAS  Google Scholar 

  36. Conrad B, Hoang V, Polley A, Hofemeister J. Hybrid Bacillus amyloliquefaciens X Bacillus licheniformis α-amylases. Eur. J. Biochem. 230: 481–490 (1995)

    CAS  Google Scholar 

  37. Liu Y, Lu F, Li Y, Wang J, Gao C. Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl. Microbiol. Biotechnol. 80: 795–803 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay-lin Jane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JT., Suwanto, A., Tan, I. et al. Molecular cloning and characterization of a thermostable α-amylase exhibiting an unusually high activity. Food Sci Biotechnol 23, 125–132 (2014). https://doi.org/10.1007/s10068-014-0017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0017-4

Keywords

Navigation