Skip to main content

Hepatocellular Carcinogenesis

  • Chapter
  • First Online:
Mechanisms of Molecular Carcinogenesis – Volume 2

Abstract

Please check if the section headings are assigned to appropriate levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. Lyon: Inerational Agency for Research on Cancer; 2013.

    Google Scholar 

  2. Kim JH, Sohn BH, Lee HS, Kim SB, Yoo JE, et al. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. PLoS Med. 2014;11:e1001770.

    Article  PubMed  PubMed Central  Google Scholar 

  3. El Serga HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127:S27–34.

    Article  Google Scholar 

  4. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El Serage HB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology. 2004;127:1372–80.

    Article  PubMed  Google Scholar 

  5. Imamura H, Matsuyama Y, Tanaka E, Ohkuba T, Hasegawa K, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.

    Article  PubMed  Google Scholar 

  6. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30:1434–40.

    Article  CAS  PubMed  Google Scholar 

  7. Poon RT, Fan ST, Ng IO, Lo CM, Lui CL, et al. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer. 2000;89:500–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  9. Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9:191–211.

    Article  PubMed  Google Scholar 

  10. Sun B, Karin M. Inflammation and liver tumorigenesis. Front Med. 2013;7:242–54.

    Article  PubMed  Google Scholar 

  11. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;21:10573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tatarinov I, Tatarinov S. Detection of embryo-specific alpha-globulin in the blood serum of a patient with primary liver cancer. Vopr Med Khim. 1964;10:90–1.

    CAS  PubMed  Google Scholar 

  14. Khattab M, Fouad M, Ahmed E. Role of biomarkers in the prediction and diagnosis of hepatocellular carcinoma. World J Hepatol. 2015;7:2474–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu B, Tian X, Sun J, Meng X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. Int J Mol Sci. 2013;14:23559–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Trevisani F, DÍntino PE, Morselli-Labate AM, Mazzella G, Accogli G, et al. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol. 2001;34:570–5.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;37:10573–83.

    Article  CAS  Google Scholar 

  18. Naraki T, Kohno N, Saito H, Fujimoto Y, Ohhira M, et al. Gamma-Carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombin. Biochim Biophys Acta. 2002;1586:287–98.

    Article  CAS  PubMed  Google Scholar 

  19. Libbrecht L, Severi T, Cassiman D, Vander Borght S, Pirenne J, et al. Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol. 2006;30:1405–11.

    Article  PubMed  Google Scholar 

  20. Shafizadeh N, Ferrell LD, Kakar S. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod Pathol. 2006;21:1011–8.

    Article  CAS  Google Scholar 

  21. Motomura Y, Senju S, Nakatsura T, Matsuyoshi H, Hirata S, et al. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma. Cancer Res. 2006;66:2414–22.

    Article  CAS  PubMed  Google Scholar 

  22. Shevede LA, Das S, Clark DW, Samant RS. Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med. 2010;10:71–81.

    Article  Google Scholar 

  23. Kawashima R, Mochida S, Matsui A, YouLu TuZ Y, Ishikawa K, et al. Expression of osteopontin in Kupffer cells and hepatic macrophages and Stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun. 1999;256:527–31.

    Article  CAS  PubMed  Google Scholar 

  24. Shand S, Plymoth A, Ge S, Feng Z, Rosen HR, et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology. 2012;55:483–90.

    Article  CAS  Google Scholar 

  25. Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ, et al. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology. 2002;35:1431–40.

    Article  CAS  PubMed  Google Scholar 

  26. Mao Y, Yang H, Xu H, Lu X, Sang X, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59:1687–93.

    Article  CAS  PubMed  Google Scholar 

  27. Hu JS, Wu DW, Liang S, Miao XY. GP73, a resident Golgi glycoprotein, is sensibility and specificity for hepatocellular carcinoma of diagnosis in a hepatitis B-endemic Asian population. Med Oncol. 2010;27:339–45.

    Article  CAS  PubMed  Google Scholar 

  28. Hussein MM, Ibrahim AA, Abdella HM, Montasser IF, Hassan MI. Evaluation of serum squamous cell carcinoma antigen as a novel biomarker for diagnosis of hepatocellular carcinoma in Egyptian patients. Indian J Cancer. 2008;45:167–72.

    Article  CAS  PubMed  Google Scholar 

  29. Giannelli G, MArinosci F, Trerotoli P, Volpe A, Quaranta M, et al. SCCA antigen combined with alpha-fetoprotein as serologic marker of HCC. Int J Cancer. 2005;117:506–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pontisso P, Quarta S, Caberlotto C, Beneduce L, Marino M, et al. Progressive increase of SCCA-IgM immune complexes in cirrhotic patients is associated with development of hepatocellular carcinoma. Int J Cancer. 2006;119:735–40.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma MC, Koltowski L, Ownbey RT, Tuszynski P, Sharam MC. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol. 2006;81:146–56.

    Article  CAS  PubMed  Google Scholar 

  32. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, et al. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem. 2008;105:370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollas H, Aukrust I, Grimmer S, Strand E, Flatmark T, et al. Annexin A2 recognises a specific region in the 3′-UTR of its cognate messenger RNA. Biochim Biophys Acta. 2006;1763:1325–34.

    Article  CAS  PubMed  Google Scholar 

  34. Muramatsu T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem. 2002;132:359–71.

    Article  CAS  PubMed  Google Scholar 

  35. Shaheen KY, Abdel-Mageed AI, Safwat E, AlBreedy AM. The value of serum midkine level in diagnosis of hepatocellular carcinoma. Int J Hepatol. 2015;2015:146389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhu WW, Guo L, Guo JJ, Jia HL, Zhu M, et al. Evaluation of midkine as a diagnostic serum biomarker in hepatocellular carcinoma. Clin Cancer Res. 2013;19:3944–54.

    Article  CAS  PubMed  Google Scholar 

  37. Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, et al. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res. 2010;70:7570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichl P, Fang M, Starlinger P, Staufer K, Nenutil R, et al. Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int J Cancer. 2015;137:385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:1287–312.

    Article  CAS  PubMed  Google Scholar 

  40. Kakolyris S, Giatromanolaki A, Koukourakis M, Powis G, Souglakos J, et al. Thioredoxin expression is associated with lymph node status and prognosis in early operable non-small cell lung cancer. Clin Cancer Res. 2001;7:3087–91.

    CAS  PubMed  Google Scholar 

  41. Ferracin M, Veronese A, Negrini M. Micromarkers: miRNA in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10:297–308.

    Article  CAS  PubMed  Google Scholar 

  42. Schütte K, Schulz C, Link A, Malfertheiner P. Current biomarkers for hepatocellular carcinoma: surveillance, diagnosis and prediction of prognosis. World J Hepatol. 2015;7:139–49.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25:2537–45.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Yu L, Gao X, Hu J, Wang J, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29:4781–8.

    Article  CAS  PubMed  Google Scholar 

  45. Abdalla MA, Haj-Ahmad Y. Promising candidate urinary microRNA Biomarkers for early detection of hepatocellular carcinoma among high-risk hepatitis C virus Egyptian patients. J Cancer. 2012;3:19–31.

    Article  CAS  PubMed  Google Scholar 

  46. He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: progress and recommendations. Oncotarget. 2015;6(27):23306–22. doi:10.18632/oncotarget.4202.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental models of hepatocellular carcinoma. J Hepatol. 2008;48(5):858–79. doi:10.1016/j.jhep.2008.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bakiri L, Wagner EF. Mouse models for liver cancer. Mol Oncol. 2013;7(2):206–23. doi:10.1016/j.molonc.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Tang Z-Y, Hou J-X. Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol. 2012;9(1):32–43.

    Article  CAS  Google Scholar 

  50. Kim SM, Im GH, Lee DG, Lee JH, Lee WJ, Lee IS. Mn(2+)-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI. Biomaterials. 2013;34(35):8941–8. doi:10.1016/j.biomaterials.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  51. Baek S, Mueller A, Lim Y-S, Lee HC, Lee Y-J, Gong G, Kim JS, Ryu J-S, Oh SJ, Lee SJ, Bacher-Stier C, Fels L, Koglin N, Schatz CA, Dinkelborg LM, Moon DH. (4S)-4-(3-18F-fluoropropyl)-l-glutamate for imaging of xC transporter activity in hepatocellular carcinoma using PET: preclinical and exploratory clinical studies. J Nucl Med. 2013;54(1):117–23. doi:10.2967/jnumed.112.108704.

    Article  CAS  PubMed  Google Scholar 

  52. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-Lail R, Hochberg A, Galun E. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007;2(9)

    Google Scholar 

  53. Zheng T, Yin D, Lu Z, Wang J, Li Y, Chen X, Liang Y, Song X, Qi S, Sun B, Xie C, Meng X, Pan S, Liu J, Jiang H, Liu L. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma. Mol Cancer. 2014;13:133. doi:10.1186/1476-4598-13-133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66(24):11851–8. doi:10.1158/0008-5472.CAN-06-1377.

    Article  CAS  PubMed  Google Scholar 

  55. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, Tanabe KK. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9. doi:10.1158/0008-5472.can-07-2460.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, Henderson DR. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61(17):6428–36.

    CAS  PubMed  Google Scholar 

  57. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R, Gu J, Qian C, Liu X. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology. 2004;39(5):1371–81. doi:10.1002/hep.20203.

    Article  CAS  PubMed  Google Scholar 

  58. Yoo BK, Emdad L, Su ZZ, Villanueva A, Chiang DY, Mukhopadhyay ND, Mills AS, Waxman S, Fisher RA, Llovet JM, Fisher PB, Sarkar D. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J Clin Invest. 2009;119(3):465–77. doi:10.1172/JCI36460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen L-D, Liu J, Yu X-F, He M, Pei X-F, Tang Z-Y, Wang Q-Q, Pang D-W, Li Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials. 2008;29(31):4170–6.

    Article  CAS  PubMed  Google Scholar 

  60. doi:http://dx.doi.org/10.1016/j.biomaterials.2008.07.025

  61. Chen K-F, Yeh P-Y, Yeh K-H, Lu Y-S, Huang S-Y, Cheng A-L. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2008;68(16):6698–707. doi:10.1158/0008-5472.can-08-0257.

    Article  CAS  PubMed  Google Scholar 

  62. Hu J, Dong A, Fernandez-Ruiz V, Shan J, Kawa M, Martinez-Anso E, Prieto J, Qian C. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res. 2009;69(17):6951–9. doi:10.1158/0008-5472.CAN-09-0541.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu LM, Shi DM, Dai Q, Cheng XJ, Yao WY, Sun PH, Ding Y, Qiao MM, Wu YL, Jiang SH, Tu SP. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 2014;5(14):5403–15.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Peng H, Dara L, Li TW, Zheng Y, Yang H, Tomasi ML, Tomasi I, Giordano P, Mato JM, Lu SC. MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology. 2013;57(6):2299–313. doi:10.1002/hep.26258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao X, Hu JF, Daniels M, Yien H, Lu H, Sharan H, Zhou X, Zeng Z, Li T, Yang Y, Hoffman AR. A novel orthotopic tumor model to study growth factors and oncogenes in hepatocarcinogenesis. Clin Cancer Res. 2003;9(7):2719–26.

    CAS  PubMed  Google Scholar 

  66. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156(2):203–11. doi:10.1016/j.jconrel.2011.07.035.

    Article  CAS  PubMed  Google Scholar 

  67. Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, Jia WH, Yuan Y, Zhuang SM. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58(2):642–53. doi:10.1002/hep.26373.

    Article  CAS  PubMed  Google Scholar 

  68. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, Xu YC, Wang JX, Zhang XM, He LJ, Zhai C, Yue W, Pei XT. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86. doi:10.1002/hep.26257.

    Article  CAS  PubMed  Google Scholar 

  69. Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer. 2014;135(12):2857–67. doi:10.1002/ijc.28943.

    Article  CAS  PubMed  Google Scholar 

  70. McIlroy D, Barteau B, Cany J, Richard P, Gourden C, Conchon S, Pitard B. DNA/amphiphilic block copolymer nanospheres promote low-dose DNA vaccination. Mol Ther. 2009;17(8):1473–81. doi:10.1038/mt.2009.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Avella DM, Li G, Schell TD, Liu D, Zhang SSM, Lou X, Berg A, Kimchi ET, Tagaram HRS, Yang Q, Shereef S, Garcia LS, Kester M, Isom HC, Rountree CB, Staveley-O’Carroll KF. Regression of established hepatocellular carcinoma is induced by chemoimmunotherapy in an orthotopic murine model. Hepatology. 2012;55(1):141–52. doi:10.1002/hep.24652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z, Wang X. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 2014;94(2):182–91. doi:10.1038/labinvest.2013.139.

    Article  CAS  PubMed  Google Scholar 

  73. Kornek M, Lukacs-Kornek V, Limmer A, Raskopf E, Becker U, Klockner M, Sauerbruch T, Schmitz V. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-formulated, immune-stimulatory vascular endothelial growth factor a small interfering RNA (siRNA) increases antitumoral efficacy in murine orthotopic hepatocellular carcinoma with liver fibrosis. Mol Med. 2008;14(7–8):365–73. doi:10.2119/2008-00003.Kornek.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pitot HC, Dragan YP. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 1991;5(9):2280–6.

    CAS  PubMed  Google Scholar 

  75. Rajewsky MF, Dauber W, Frankenberg H. Liver carcinogenesis by diethylnitrosamine in the rat. Science. 1966;152(3718):83–5.

    Article  CAS  PubMed  Google Scholar 

  76. Solt DB, Medline A, Farber E. Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol. 1977;88(3):595–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Farber E, Sarma DS. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest. 1987;56(1):4–22.

    CAS  PubMed  Google Scholar 

  78. Diwan BA, Rice JM, Ohshima M, Ward JM. Interstrain differences in susceptibility to liver carcinogenesis initiated by N-nitrosodiethylamine and its promotion by phenobarbital in C57BL/6NCr, C3H/HeNCrMTV- and DBA/2NCr mice. Carcinogenesis. 1986;7(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  79. Vesselinovitch SD, Mihailovich N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res. 1983;43(9):4253–9.

    CAS  PubMed  Google Scholar 

  80. McCay PB, Lai EK, Poyer JL, DuBose CM, Janzen EG. Oxygen- and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro. J Biol Chem. 1984;259(4):2135–43.

    CAS  PubMed  Google Scholar 

  81. Ghoshal AK, Ahluwalia M, Farber E. The rapid induction of liver cell death in rats fed a choline-deficient methionine-low diet. Am J Pathol. 1983;113(3):309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li X, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J Hepatol. 2002;36(4):488–93.

    Article  PubMed  Google Scholar 

  83. Rushmore TH, Ghazarian DM, Subrahmanyan V, Farber E, Ghoshal AK. Probable free radical effects on rat liver nuclei during early hepatocarcinogenesis with a choline-devoid low methionine diet. Cancer Res. 1987;47(24 Pt 1):6731–40.

    CAS  PubMed  Google Scholar 

  84. Coulouarn C, Gomez-Quiroz LE, Lee J-S, Kaposi-Novak P, Conner EA, Goldina TA, Onishchenko GE, Factor VM, Thorgeirsson SS. Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology. 2006;44(4):1003–11. doi:10.1002/hep.21293.

    Article  CAS  PubMed  Google Scholar 

  85. Groos J, Bannasch P, Schwarz M, Kopp-Schneider A. Comparison of mode of action of four hepatocarcinogens: a model-based approach. Toxicol Sci. 2007;99(2):446–54. doi:10.1093/toxsci/kfm183.

    Article  CAS  PubMed  Google Scholar 

  86. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet. 2004;36(12):1306–11. doi:10.1038/ng1481.

    Article  CAS  PubMed  Google Scholar 

  87. Poirier LA. Hepatocarcinogenesis by diethylnitrosamine in rats fed high dietary levels of lipotropes. J Natl Cancer Inst. 1975;54(1):137–40.

    Article  CAS  PubMed  Google Scholar 

  88. Tamano S, Merlino GT, Ward JM. Rapid development of hepatic tumors in transforming growth factor alpha transgenic mice associated with increased cell proliferation in precancerous hepatocellular lesions initiated by N-nitrosodiethylamine and promoted by phenobarbital. Carcinogenesis. 1994;15(9):1791–8.

    Article  CAS  PubMed  Google Scholar 

  89. Yaswen P, Goyette M, Shank PR, Fausto N. Expression of c-Ki-ras, c-Ha-ras, and c-myc in specific cell types during hepatocarcinogenesis. Mol Cell Biol. 1985;5(4):780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nagy P, Evarts RP, Marsden E, Roach J, Thorgeirsson SS. Cellular distribution of c-myc transcripts during chemical hepatocarcinogenesis in rats. Cancer Res. 1988;48(19):5522–7.

    CAS  PubMed  Google Scholar 

  91. Rao MS, Lalwani ND, Watanabe TK, Reddy JK. Inhibitory effect of antioxidants ethoxyquin and 2(3)-tert-butyl-4-hydroxyanisole on hepatic tumorigenesis in rats fed ciprofibrate, a peroxisome proliferator. Cancer Res. 1984;44(3):1072–6.

    CAS  PubMed  Google Scholar 

  92. Sakurai T, Kudo M, Umemura A, He G, Elsharkawy AM, Seki E, Karin M. p38α inhibits liver fibrogenesis and consequent hepatocarcinogenesis by curtailing accumulation of reactive oxygen species. Cancer Res. 2013;73(1):215–24. doi:10.1158/0008-5472.can-12-1602.

    Article  CAS  PubMed  Google Scholar 

  93. Fujii T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM, Lanuti M, Tanabe KK. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol. 2010;10(1):1–11. doi:10.1186/1471-230x-10-79.

    Article  CAS  Google Scholar 

  94. Ghebranious N, Sell S. The mouse equivalent of the human p53ser249 mutation p53ser246 enhances aflatoxin hepatocarcinogenesis in hepatitis B surface antigen transgenic and p53 heterozygous null mice. Hepatology. 1998;27(4):967–73. doi:10.1002/hep.510270411.

    Article  CAS  PubMed  Google Scholar 

  95. Tuveson DA, Jacks T. Technologically advanced cancer modeling in mice. Curr Opin Genet Dev. 2002;12(1):105–10. doi:10.1016/S0959-437X(01)00272-6.

    Article  CAS  PubMed  Google Scholar 

  96. Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007;7(9):645–58. doi:10.1038/nrc2192.

    Article  CAS  PubMed  Google Scholar 

  97. Kamegaya Y, Hiasa Y, Zukerberg L, Fowler N, Blackard JT, Lin W, Choe WH, Schmidt EV, Chung RT. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology. 2005;41(3):660–7. doi:10.1002/hep.20621.

    Article  PubMed  Google Scholar 

  98. Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, Okuda M, Gosert R, Xiao S, Weinman SA, Lemon SM. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 2002;122(2):352–65.

    Article  CAS  PubMed  Google Scholar 

  99. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990;61(6):1137–46. doi:10.1016/0092-8674(90)90076-Q.

    Article  CAS  PubMed  Google Scholar 

  100. Lou DQ, Molina T, Bennoun M, Porteu A, Briand P, Joulin V, Vasseur-Cognet M, Cavard C. Conditional hepatocarcinogenesis in mice expressing SV 40 early sequences. Cancer Lett. 2005;229(1):107–14. doi:10.1016/j.canlet.2004.12.032.

    Article  CAS  PubMed  Google Scholar 

  101. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson Å, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431(7012):1112–7. doi:10.1038/nature03043.

    Article  CAS  PubMed  Google Scholar 

  102. Chisari FV, Filippi P, Buras J, McLachlan A, Popper H, Pinkert CA, Palmiter RD, Brinster RL. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc Natl Acad Sci U S A. 1987;84(19):6909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59(6):1145.

    Article  CAS  PubMed  Google Scholar 

  104. Chisari FV, Pinkert CA, Milich DR, Filippi P, McLachlan A, Palmiter RD, Brinster RL. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science. 1985;230(4730):1157–60.

    Article  CAS  PubMed  Google Scholar 

  105. Koike K, Moriya K, Iino S, Yotsuyanagi H, Endo Y, Miyamura T, Kurokawa K. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology. 1994;19(4):810–9.

    Article  CAS  PubMed  Google Scholar 

  106. Toshkov I, Chisari FV, Bannasch P. Hepatic preneoplasia in hepatitis B virus transgenic mice. Hepatology. 1994;20(5):1162–72. doi:10.1016/0270-9139(94)90752-8.

    Article  CAS  PubMed  Google Scholar 

  107. Koike K, Moriya K, Kimura S. Role of hepatitis C virus in the development of hepatocellular carcinoma: transgenic approach to viral hepatocarcinogenesis. J Gastroenterol Hepatol. 2002;17(4):394–400. doi:10.1046/j.1440-1746.2002.02763.x.

    Article  CAS  PubMed  Google Scholar 

  108. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-Coa oxidase: implications for peroxisome proliferator-activated receptor α natural ligand metabolism. J Biol Chem. 1998;273(25):15639–45. doi:10.1074/jbc.273.25.15639.

    Article  CAS  PubMed  Google Scholar 

  109. Geller SA, Nichols WS, Kim S, Tolmachoff T, Lee S, Dycaico MJ, Felts K, Sorge JA. Hepatocarcinogenesis is the sequel to hepatitis in Z#2 α1-antitrypsin transgenic mice: histopathological and DNA ploidy studies. Hepatology. 1994;19(2):389–97.

    Article  CAS  PubMed  Google Scholar 

  110. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C. Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A. 2004;101(49):17216–21. doi:10.1073/pnas.0404761101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with β-catenin and Ha-ras gene mutations. Cancer Res. 2004;64(1):48–54. doi:10.1158/0008-5472.CAN-03-2123.

    Article  CAS  PubMed  Google Scholar 

  112. Conner EA, Lemmer ER, Sánchez A, Factor VM, Thorgeirsson SS. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochem Biophys Res Commun. 2003;302(1):114–20. doi:10.1016/S0006-291X(03)00125-6.

    Article  CAS  PubMed  Google Scholar 

  113. Dalemans W, Perraud F, Le Meur M, Gerlinger P, Courthey M, Pavirani A. Heterologous protein expression by transimmortalized differentiated liver cell lines derived from transgenic mice (hepatomas/α1 antitrypsin/ONC mouse). Biologicals. 1990;18(3):191–8. doi:10.1016/1045-1056(90)90006-L.

    Article  CAS  PubMed  Google Scholar 

  114. Perraud F, Dalemans W, Gendrault JL, Dreyer D, Ali-Hadji D, Faure T, Pavirani A. Characterization of trans-immortalized hepatic cell lines established from transgenic mice. Exp Cell Res. 1991;195(1):59–65. doi:10.1016/0014-4827(91)90500-T.

    Article  CAS  PubMed  Google Scholar 

  115. Sandgren EP, Quaife CJ, Pinkert CA, Palmiter RD, Brinster RL. Oncogene-induced liver neoplasia in transgenic mice. Oncogene. 1989;4(6):715–24.

    CAS  PubMed  Google Scholar 

  116. Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM, Thorgeirsson SS. Evolution of neoplastic development in the liver of transgenic mice co- expressing c-myc and transforming growth factor-α. Am J Pathol. 1996;149(2):407–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Santoni-Rugiu E, Jensen MR, Thorgeirsson SS. Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c-myc and transforming growth factor α. Cancer Res. 1998;58(1):123–34.

    CAS  PubMed  Google Scholar 

  118. Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor α in hepatic oncogenesis. Cancer Res. 1993;53(8):1719–23.

    CAS  PubMed  Google Scholar 

  119. Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene. 2000;19(44):5054–62.

    Article  CAS  PubMed  Google Scholar 

  120. Tonjes RR, Lohler J, O’Sullivan JF, Kay GF, Schmidt GH, Dalemans W, Pavirani A, Paul D. Autocrine mitogen IgEGF cooperates with c-myc or with the Hcs locus during hepatocarcinogenesis in transgenic mice. Oncogene. 1995;10(4):765–8.

    CAS  PubMed  Google Scholar 

  121. Kitisin K, Ganesan N, Tang Y, Jogunoori W, Volpe EA, Kim SS, Katuri V, Kallakury B, Pishvaian M, Albanese C, Mendelson J, Zasloff M, Rashid A, Fishbein T, Evans SRT, Sidawy A, Reddy EP, Mishra B, Johnson LB, Shetty K, Mishra L. Disruption of transforming growth factor-β signaling through β-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene. 2007;26(50):7103–10. doi:10.1038/sj.onc.1210513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L. Disruption of transforming growth factor-β signaling in ELF β-spectrin-deficient mice. Science. 2003;299(5606):574–7. doi:10.1126/science.1075994.

    Article  CAS  PubMed  Google Scholar 

  123. Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7(11):1513–23.

    CAS  PubMed  Google Scholar 

  124. Shiota G, Wang TC, Nakamura T, Schmidt EV. Hepatocyte growth factor in transgenic mice: effects on hepatocyte growth, liver regeneration and gene expression. Hepatology. 1994;19(4):962–72.

    Article  CAS  PubMed  Google Scholar 

  125. Santoni-Rugiu E, Preisegger KH, Kiss A, Audolfsson T, Shiota G, Schmidt EV, Thorgeirsson SS. Inhibition of neoplastic development in the liver by hepatocyte growth factor in a transgenic mouse model. Proc Natl Acad Sci U S A. 1996;93(18):9577–82. doi:10.1073/pnas.93.18.9577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shiota G, Kawasaki H, Nakamura T, Schmidt EV. Characterization of double transgenic mice expressing hepatocyte growth factor and transforming growth factor α. Res Commun Mol Pathol Pharmacol. 1995;90(1):17–24.

    CAS  PubMed  Google Scholar 

  127. Rogler CE, Yang D, Rossetti L, Donohoe J, Alt E, Chang CJ, Rosenfeld R, Neely K, Hintz R. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem. 1994;269(19):13779–84.

    CAS  PubMed  Google Scholar 

  128. Harris TM, Rogler LE, Rogler CE. Reactivation of the maternally imprinted IGF2 allele in TGFα induced hepatocellular carcinomas in mice. Oncogene. 1998;16(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  129. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien P-A, Thimme R, Blum H, Nedospasov SA, Zatloukal K, Ramzan M, Ciesek S, Pietschmann T, Marche PN, Karin M, Kopf M, Browning JL, Aguzzi A, Heikenwalder M. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16(4):295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Katzenellenbogen M, Pappo O, Barash H, Klopstock N, Mizrahi L, Olam D, Jacob-Hirsch J, Amariglio N, Rechavi G, Mitchell LA, Kohen R, Domany E, Galun E, Goldenberg D. Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. Cancer Res. 2006;66(8):4001–10. doi:10.1158/0008-5472.CAN-05-2937.

    Article  CAS  PubMed  Google Scholar 

  131. Mauad TH, CMJ VN, Dingemans KP, JJM S, Schinkel AH, RGE N, Van Den Bergh Weerman MA, Verkruisen RP, Groen AK, RPJ OE, Van Der Valk MA, Borst P, GJA O. Mice with homozygous disruption of the mdr2 P-glycoprotein gene a novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol. 1994;145(5):1237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tward AD, Jones KD, Yant S, Siu TC, Sheung TF, Chen X, Kay MA, Wang R, Bishop JM. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A. 2007;104(37):14771–6. doi:10.1073/pnas.0706578104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang R, Ferrell LD, Faouzi S, Maher JJ, Michael Bishop J. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153(5):1023–33. doi:10.1083/jcb.153.5.1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takami T, Kaposi-Novak P, Uchida K, Gomez-Quiroz LE, Conner EA, Factor VM, Thorgeirsson SS. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine-induced hepatocarcinogenesis. Cancer Res. 2007;67(20):9844–51. doi:10.1158/0008-5472.CAN-07-1905.

    Article  CAS  PubMed  Google Scholar 

  135. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7. doi:10.1016/S0960-9822(00)00002-6.

    Article  CAS  PubMed  Google Scholar 

  136. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol. 2005;25(4):1228–37. doi:10.1128/MCB.25.4.1228-1237.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen YW, Klimstra DS, Mongeau ME, Tatem JL, Boyartchuk V, Lewis BC. Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells. Cancer Res. 2007;67(16):7589–96. doi:10.1158/0008-5472.CAN-07-0381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–60. doi:10.1038/nature05529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2005;102(9):3389–94. doi:10.1073/pnas.0409722102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 2004;113(12):1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Watanabe S, Horie Y, Kataoka E, Sato W, Dohmen T, Ohshima S, Goto T, Suzuki A. Non-alcoholic steatohepatitis and hepatocellular carcinoma: lessons from hepatocyte-specific phosphatase and tensin homolog (PTEN)-deficient mice. J Gastroenterol Hepatol. 2007;22(Suppl. 1):S96–S100. doi:10.1111/j.1440-1746.2006.04665.x.

    Article  CAS  PubMed  Google Scholar 

  142. Dubois N, Bennoun M, Allemand I, Molina T, Grimber G, Daudet-Monsac M, Abelanet R, Briand P. Time-course development of differentiated hepatocarcinoma and lung metastasis in transgenic mice. J Hepatol. 1991;13(2):227–39. doi:10.1016/0168-8278(91)90819-W.

    Article  CAS  PubMed  Google Scholar 

  143. Manickan E, Satoi J, Wang TC, Liang TJ. Conditional liver-specific expression of simian virus 40 T antigen leads to regulatable development of hepatic neoplasm in transgenic mice. J Biol Chem. 2001;276(17):13989–94.

    Article  CAS  PubMed  Google Scholar 

  144. Messing A, Chen HY, Palmiter RD, Brinster RL. Peripheral neuropathies, hepatocellular carcinomas and islet cell adenomas in transgenic mice. Nature. 1985;316(6027):461–3. doi:10.1038/316461a0.

    Article  CAS  PubMed  Google Scholar 

  145. Schirmacher P, Held WA, Yang D, Biempica L, Rogler CE. Selective amplification of periportal transitional cells precedes formation of hepatocellular carcinoma in SV40 large tag transgenic mice. Am J Pathol. 1991;139(1):231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sepulveda AR, Finegold MJ, Smith B, Slagle BL, DeMayo JL, Shen RF, Woo SLC, Butel JS. Development of a transgenic mouse system for the analysis of stages in liver carcinogenesis using tissue-specific expression of SV40 large T-antigen controlled by regulatory elements of the human α-1-antitrypsin gene. Cancer Res. 1989;49(21):6108–17.

    CAS  PubMed  Google Scholar 

  147. Farazi PA, Glickman J, Horner J, DePinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res. 2006;66(9):4766–73. doi:10.1158/0008-5472.CAN-05-4608.

    Article  CAS  PubMed  Google Scholar 

  148. Lee GH, Merlino G, Fausto N. Development of liver tumors in transforming growth factor α transgenic mice. Cancer Res. 1992;52(19):5162–70.

    CAS  PubMed  Google Scholar 

  149. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990;61(6):1121–35. doi:10.1016/0092-8674(90)90075-.

    Article  CAS  PubMed  Google Scholar 

  150. Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS. Hepatic expression of mature transforming growth factor β1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A. 1995;92(7):2572–6. doi:10.1073/pnas.92.7.2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schnur J, Nagy P, Sebestyén A, Schaff Z, Thorgeirsson SS. Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGFβ-1 in liver. Eur J Cancer. 1999;35(13):1842–5. doi:10.1016/S0959-8049(99)00224-5.

    Article  CAS  PubMed  Google Scholar 

  152. Schnur J, Oláh J, Szepesi Á, Nagy P, Thorgeirsson SS. Thioacetamide-induced hepatic fibrosis in transforming growth factor beta-1 transgenic mice. Eur J Gastroenterol Hepatol. 2004;16(2):127–33. doi:10.1097/00042737-200402000-00002.

    Article  CAS  PubMed  Google Scholar 

  153. Soga M, Kishimoto Y, Kawamura Y, Inagaki S, Makino S, Saibara T. Spontaneous development of hepatocellular carcinomas in the FLS mice with hereditary fatty liver. Cancer Lett. 2003;196(1):43–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Golob-Schwarzl, N., Kessler, S., Haybaeck, J. (2017). Hepatocellular Carcinogenesis. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-53661-3_6

Download citation

Publish with us

Policies and ethics