Skip to main content

LRRK2 and the Immune System

  • Chapter
  • First Online:
Leucine-Rich Repeat Kinase 2 (LRRK2)

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 14))

Abstract

Polymorphisms in leucine-rich repeat kinase 2 (LRRK2) have been linked to familial Parkinson’s disease, increased risk of sporadic Parkinson’s disease, increased risk of Crohn’s inflammatory bowel disease, and increased susceptibility to leprosy. As well as LRRK2 mutations, these diseases share in common immune dysfunction and inflammation. LRRK2 is highly expressed in particular immune cells and has been biochemically linked to the intertwined pathways regulating inflammation, mitochondrial function, and autophagy/lysosomal function. This review outlines what is currently understood about LRRK2 function in the immune system and the potential implications of LRRK2 dysfunction for diseases genetically linked to this enigmatic enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosgraaf L, Van Haastert PJ (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 1643(1–3):5–10

    Article  CAS  PubMed  Google Scholar 

  2. Nichols RJ, Dzamko N, Hutti JE, Cantley LC, Deak M, Moran J, Bamborough P, Reith AD, Alessi DR (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease. Biochem J 424(1):47–60. doi:10.1042/BJ20091035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Mobley JA, DeLucas LJ, Kahn RA, West AB (2015) LRRK2 autophosphorylation enhances its GTPase activity. FASEB J 30:336–347. doi:10.1096/fj.15-277095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Li T, Yang D, Zhong S, Thomas JM, Xue F, Liu J, Kong L, Voulalas P, Hassan HE, Park JS, MacKerell AD Jr, Smith WW (2014) Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson’s disease cell and mouse models. Hum Mol Genet 23(23):6212–6222. doi:10.1093/hmg/ddu341

    Article  CAS  PubMed  Google Scholar 

  5. Gilsbach BK, Kortholt A (2014) Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation. Front Mol Neurosci 7:32. doi:10.3389/fnmol.2014.00032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Biosa A, Trancikova A, Civiero L, Glauser L, Bubacco L, Greggio E, Moore DJ (2013) GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2. Hum Mol Genet 22(6):1140–1156. doi:10.1093/hmg/dds522

    Article  CAS  PubMed  Google Scholar 

  7. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607. doi:10.1016/j.neuron.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600. doi:10.1016/j.neuron.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  9. Paisan-Ruiz C (2009) LRRK2 gene variation and its contribution to Parkinson disease. Hum Mutat 30(8):1153–1160. doi:10.1002/humu.21038

    Article  CAS  PubMed  Google Scholar 

  10. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102(46):16842–16847. doi:10.1073/pnas.0507360102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405(2):307–317. doi:10.1042/BJ20070209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daher JP, Abdelmotilib HA, Hu X, Volpicelli-Daley LA, Moehle MS, Fraser KB, Needle E, Chen Y, Steyn SJ, Galatsis P, Hirst WD, West AB (2015) Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates alpha-synuclein gene-induced neurodegeneration. J Biol Chem 290(32):19433–19444. doi:10.1074/jbc.M115.660001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L, Romero N, Jiang H, Uitti RJ, Huang Z, Opala G, Scarffe LA, Dawson VL, Klein C, Feng J, Ross OA, Trojanowski JQ, Lee VM, Marder K, Surmeier DJ, Wszolek ZK, Przedborski S, Krainc D, Dawson TM, Isacson O (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4(141), 141ra190. doi:10.1126/scitranslmed.3003985

    Article  CAS  Google Scholar 

  14. Lee BD, Shin JH, VanKampen J, Petrucelli L, West AB, Ko HS, Lee YI, Maguire-Zeiss KA, Bowers WJ, Federoff HJ, Dawson VL, Dawson TM (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998–1000. doi:10.1038/nm.2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD (2015) Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 24(21):6013–6028. doi:10.1093/hmg/ddv314

    Article  CAS  PubMed  Google Scholar 

  16. Marcinek P, Jha AN, Shinde V, Sundaramoorthy A, Rajkumar R, Suryadevara NC, Neela SK, van Tong H, Balachander V, Valluri VL, Thangaraj K, Velavan TP (2013) LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PLoS One 8(8), e73103. doi:10.1371/journal.pone.0073103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS, Zhang C, Zhang L, Han JW, Yu GQ, Quan C, Yu YX, Zhang Z, Shi BQ, Zhang LH, Cheng H, Wang CY, Lin Y, Zheng HF, Fu XA, Zuo XB, Wang Q, Long H, Sun YP, Cheng YL, Tian HQ, Zhou FS, Liu HX, Lu WS, He SM, Du WL, Shen M, Jin QY, Wang Y, Low HQ, Erwin T, Yang NH, Li JY, Zhao X, Jiao YL, Mao LG, Yin G, Jiang ZX, Wang XD, Yu JP, Hu ZH, Gong CH, Liu YQ, Liu RY, Wang DM, Wei D, Liu JX, Cao WK, Cao HZ, Li YP, Yan WG, Wei SY, Wang KJ, Hibberd ML, Yang S, Zhang XJ, Liu JJ (2009) Genomewide association study of leprosy. N Engl J Med 361(27):2609–2618. doi:10.1056/NEJMoa0903753

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ (2011) The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12(11):1063–1070. doi:10.1038/ni.2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7(4):243–249. doi:10.1038/cmi.2010.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M, Inohara N, Nunez G (2007) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178(4):2380–2386

    Article  CAS  PubMed  Google Scholar 

  21. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512. doi:10.1074/jbc.C200673200

    Article  CAS  PubMed  Google Scholar 

  22. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606. doi:10.1038/35079114

    Article  CAS  PubMed  Google Scholar 

  23. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603. doi:10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  24. Tigno-Aranjuez JT, Benderitter P, Rombouts F, Deroose F, Bai X, Mattioli B, Cominelli F, Pizarro TT, Hoflack J, Abbott DW (2014) In vivo inhibition of RIPK2 kinase alleviates inflammatory disease. J Biol Chem 289(43):29651–29664. doi:10.1074/jbc.M114.591388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nachbur U, Stafford CA, Bankovacki A, Zhan Y, Lindqvist LM, Fiil BK, Khakham Y, Ko HJ, Sandow JJ, Falk H, Holien JK, Chau D, Hildebrand J, Vince JE, Sharp PP, Webb AI, Jackman KA, Muhlen S, Kennedy CL, Lowes KN, Murphy JM, Gyrd-Hansen M, Parker MW, Hartland EL, Lew AM, Huang DC, Lessene G, Silke J (2015) A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nat Commun 6:6442. doi:10.1038/ncomms7442

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Liu H, Yu G, Chen X, Liu H, Tian H, Zhou G, Zhang F (2011) Gene expression analysis of leprosy by using a multiplex branched DNA assay. Exp Dermatol 20(6):520–522. doi:10.1111/j.1600-0625.2011.01270.x

    Article  PubMed  Google Scholar 

  27. Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT (2009) The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 29(4):1011–1016. doi:10.1523/JNEUROSCI.5175-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. doi:10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  30. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  31. Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, Korzenik JR, Rioux JD, Daly MJ, Xavier RJ, Podolsky DK (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185(9):5577–5585. doi:10.4049/jimmunol.1000548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hakimi M, Selvanantham T, Swinton E, Padmore RF, Tong Y, Kabbach G, Venderova K, Girardin SE, Bulman DE, Scherzer CR, LaVoie MJ, Gris D, Park DS, Angel JB, Shen J, Philpott DJ, Schlossmacher MG (2011) Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm 118(5):795–808. doi:10.1007/s00702-011-0653-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thevenet J, Pescini Gobert R, Hooft van Huijsduijnen R, Wiessner C, Sagot YJ (2011) Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One 6(6), e21519. doi:10.1371/journal.pone.0021519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, Pedrioli P, Clark K, Alessi DR (2012) The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One 7(6), e39132. doi:10.1371/journal.pone.0039132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuss M, Adamopoulou E, Kahle PJ (2014) Interferon-gamma induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5 in macrophages. J Neurochem 129(6):980–987. doi:10.1111/jnc.12668

    Article  CAS  PubMed  Google Scholar 

  36. Deng X, Dzamko N, Prescott A, Davies P, Liu Q, Yang Q, Lee JD, Patricelli MP, Nomanbhoy TK, Alessi DR, Gray NS (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7(4):203–205. doi:10.1038/nchembio.538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan J, Almilaji A, Schmid E, Elvira B, Shimshek DR, van der Putten H, Wagner CA, Shumilina E, Lang F (2015) Leucine-rich repeat kinase 2-sensitive Na+/Ca2+ exchanger activity in dendritic cells. FASEB J 29(5):1701–1710. doi:10.1096/fj.14-264028

    Article  CAS  PubMed  Google Scholar 

  38. Connolly SF, Kusner DJ (2007) The regulation of dendritic cell function by calcium-signaling and its inhibition by microbial pathogens. Immunol Res 39(1–3):115–127

    Article  CAS  PubMed  Google Scholar 

  39. Deng X, Choi HG, Buhrlage SJ, Gray NS (2012) Leucine-rich repeat kinase 2 inhibitors: a patent review (2006–2011). Expert Opin Ther Pat 22(12):1415–1426. doi:10.1517/13543776.2012.729041

    Article  CAS  PubMed  Google Scholar 

  40. Kubo M, Kamiya Y, Nagashima R, Maekawa T, Eshima K, Azuma S, Ohta E, Obata F (2010) LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J Neuroimmunol 229(1–2):123–128. doi:10.1016/j.jneuroim.2010.07.021

    Article  CAS  PubMed  Google Scholar 

  41. Ness D, Ren Z, Gardai S, Sharpnack D, Johnson VJ, Brennan RJ, Brigham EF, Olaharski AJ (2013) Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. PLoS One 8(6), e66164. doi:10.1371/journal.pone.0066164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maekawa T, Kubo M, Yokoyama I, Ohta E, Obata F (2010) Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 392(3):431–435. doi:10.1016/j.bbrc.2010.01.041

    Article  CAS  PubMed  Google Scholar 

  43. Wandu WS, Tan C, Ogbeifun O, Vistica BP, Shi G, Hinshaw SJ, Xie C, Chen X, Klinman DM, Cai H, Gery I (2015) Leucine-rich repeat kinase 2 (Lrrk2) deficiency diminishes the development of experimental autoimmune uveitis (EAU) and the adaptive immune response. PLoS One 10(6), e0128906. doi:10.1371/journal.pone.0128906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60(5):557–569. doi:10.1002/ana.21019

    Article  CAS  PubMed  Google Scholar 

  45. Melrose HL, Kent CB, Taylor JP, Dachsel JC, Hinkle KM, Lincoln SJ, Mok SS, Culvenor JG, Masters CL, Tyndall GM, Bass DI, Ahmed Z, Andorfer CA, Ross OA, Wszolek ZK, Delldonne A, Dickson DW, Farrer MJ (2007) A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 147(4):1047–1058. doi:10.1016/j.neuroscience.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  46. Mandemakers W, Snellinx A, O’Neill MJ, de Strooper B (2012) LRRK2 expression is enriched in the striosomal compartment of mouse striatum. Neurobiol Dis 48(3):582–593. doi:10.1016/j.nbd.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  47. Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611. doi:10.1523/JNEUROSCI.5601-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Puccini JM, Marker DF, Fitzgerald T, Barbieri J, Kim CS, Miller-Rhodes P, Lu SM, Dewhurst S, Gelbard HA (2015) Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. J Neurosci 35(13):5271–5283. doi:10.1523/JNEUROSCI.0650-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu SM, Gelbard HA (2012) LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. J Neuroinflammation 9:261. doi:10.1186/1742-2094-9-261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH (2012) Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One 7(4), e34693. doi:10.1371/journal.pone.0034693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    Article  CAS  PubMed  Google Scholar 

  52. Guerreiro PS, Huang Y, Gysbers A, Cheng D, Gai WP, Outeiro TF, Halliday GM (2013) LRRK2 interactions with alpha-synuclein in Parkinson’s disease brains and in cell models. J Mol Med 91(4):513–522. doi:10.1007/s00109-012-0984-y

    Article  CAS  PubMed  Google Scholar 

  53. Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson TM, Moore DJ, Emson PC (2007) Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res 1155:208–219. doi:10.1016/j.brainres.2007.04.034

    Article  CAS  PubMed  Google Scholar 

  54. Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL (2006) LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol 65(10):953–963. doi:10.1097/01.jnen.0000235121.98052.54

    Article  CAS  PubMed  Google Scholar 

  55. Munoz L, Kavanagh ME, Phoa AF, Heng B, Dzamko N, Chen EJ, Doddareddy MR, Guillemin GJ, Kassiou M (2015) Optimisation of LRRK2 inhibitors and assessment of functional efficacy in cell-based models of neuroinflammation. Eur J Med Chem 95:29–34. doi:10.1016/j.ejmech.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  56. Davies P, Hinkle KM, Sukar NN, Sepulveda B, Mesias R, Serrano G, Alessi DR, Beach TG, Benson DL, White CL, Cowell RM, Das SS, West AB, Melrose HL (2013) Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochem J 453(1):101–113. doi:10.1042/BJ20121742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang Y, Song YJ, Murphy K, Holton JL, Lashley T, Revesz T, Gai WP, Halliday GM (2008) LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. Acta Neuropathol 116(6):639–646. doi:10.1007/s00401-008-0446-3

    Article  CAS  PubMed  Google Scholar 

  58. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650. doi:10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  59. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. doi:10.3389/fimmu.2014.00461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, Macartney T, Tong Y, Shen J, Prescott AR, Alessi DR (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J 430(3):393–404. doi:10.1042/BJ20100483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser (910)/Ser (935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430(3):405–413. doi:10.1042/BJ20100784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J 434(1):93–104. doi:10.1042/BJ20101701

    Article  CAS  PubMed  Google Scholar 

  63. Gillardon F, Schmid R, Draheim H (2012) Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 208:41–48. doi:10.1016/j.neuroscience.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  64. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    Article  CAS  PubMed  Google Scholar 

  65. Bryant CE, Monie TP (2012) Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biol 2(4):120015. doi:10.1098/rsob.120015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. doi:10.1146/annurev.immunol.15.1.707

    Article  CAS  PubMed  Google Scholar 

  67. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472–484. doi:10.1038/nri1632

    Article  CAS  PubMed  Google Scholar 

  68. Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z, Schmidt V, Hogan PG, Sacks DB, Rao A (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A 108(28):11381–11386. doi:10.1073/pnas.1019711108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573. doi:10.1126/science.1115901

    Article  CAS  PubMed  Google Scholar 

  70. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361. doi:10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480. doi:10.1038/nature09973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yue M, Hinkle KM, Davies P, Trushina E, Fiesel FC, Christenson TA, Schroeder AS, Zhang L, Bowles E, Behrouz B, Lincoln SJ, Beevers JE, Milnerwood AJ, Kurti A, McLean PJ, Fryer JD, Springer W, Dickson DW, Farrer MJ, Melrose HL (2015) Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiol Dis 78:172–195. doi:10.1016/j.nbd.2015.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Su YC, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22(22):4545–4561. doi:10.1093/hmg/ddt301

    Article  CAS  PubMed  Google Scholar 

  74. Saez-Atienzar S, Bonet-Ponce L, Blesa JR, Romero FJ, Murphy MP, Jordan J, Galindo MF (2014) The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 5, e1368. doi:10.1038/cddis.2014.320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang S, Xia C, Li S, Du L, Zhang L, Hu Y (2014) Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis 5, e1217. doi:10.1038/cddis.2014.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castrejon-Jimenez NS, Leyva-Paredes K, Hernandez-Gonzalez JC, Luna-Herrera J, Garcia-Perez BE (2015) The role of autophagy in bacterial infections. Biosci Trends 9(3):149–159. doi:10.5582/bst.2015.01035

    Article  PubMed  Google Scholar 

  77. Knodler LA, Celli J (2011) Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol 13(9):1319–1327. doi:10.1111/j.1462-5822.2011.01632.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schapansky J, Nardozzi JD, Felizia F, Lavoie MJ (2014) Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 23:4201–4214. doi:10.1093/hmg/ddu138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107(21):9879–9884. doi:10.1073/pnas.1004676107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H, Cai H, Bonventre JV, Shen J (2012) Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7:2. doi:10.1186/1750-1326-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MP, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA (2013) Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta 1833(12):2900–2910. doi:10.1016/j.bbamcr.2013.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406. doi:10.1038/nn.3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C, Yang WJ, Moore DJ, Dawson TM, Dawson VL, Chiosis G, Cookson MR, Cai H (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 28(13):3384–3391. doi:10.1523/JNEUROSCI.0185-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68(5):325–340

    Article  CAS  PubMed  Google Scholar 

  85. Dzamko N, Geczy CL, Halliday GM (2014) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102. doi:10.1016/j.neuroscience.2014.10.028

    Article  PubMed  CAS  Google Scholar 

  86. Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinson’s Dis 3(4):493–514. doi:10.3233/JPD-130250

    Google Scholar 

  87. Deleidi M, Gasser T (2013) The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci 70(22):4259–4273. doi:10.1007/s00018-013-1352-y

    Article  CAS  PubMed  Google Scholar 

  88. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526. doi:10.1007/s00401-003-0766-2

    Article  CAS  PubMed  Google Scholar 

  89. Dubiel JS, Jaskiewicz J, Zmudka K, Brzostek T, Surdacki A (1992) Influence of verapamil on the coronary arteriovenous difference in long chain free fatty acids in hypertrophic cardiomyopathy. Eur J Clin Pharmacol 42(2):217–218

    Article  CAS  PubMed  Google Scholar 

  90. Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179. doi:10.1016/j.bbr.2008.09.040

    Article  CAS  PubMed  Google Scholar 

  91. Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74(12):995–1002. doi:10.1212/WNL.0b013e3181d5a4a3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  93. Halliday G, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 115(4):409–415. doi:10.1007/s00401-008-0344-8

    Article  PubMed  Google Scholar 

  94. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  95. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  96. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562. doi:10.1038/ncomms2534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One 8(1), e55375. doi:10.1371/journal.pone.0055375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360. doi:10.1002/glia.22437

    Article  PubMed  PubMed Central  Google Scholar 

  99. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC (2011) The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166. doi:10.1186/1742-2094-8-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Lachaud CC, Guilliams T, Fernandez-Montesinos R, Benitez-Rondan A, Robledo G, Hmadcha A, Delgado M, Dobson CM, Pozo D (2013) Preconditioning of microglia by alpha-synuclein strongly affects the response induced by toll-like receptor (TLR) stimulation. PLoS One 8(11), e79160. doi:10.1371/journal.pone.0079160

    Article  PubMed  PubMed Central  Google Scholar 

  101. Daher JP, Volpicelli-Daley LA, Blackburn JP, Moehle MS, West AB (2014) Abrogation of alpha-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci U S A 111(25):9289–9294. doi:10.1073/pnas.1403215111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33(6):599–614. doi:10.1111/j.1365-2990.2007.00874.x

    Article  CAS  PubMed  Google Scholar 

  103. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  104. Sung HY, Park JW, Kim JS (2014) The frequency and severity of gastrointestinal symptoms in patients with early Parkinson’s disease. J Mov Disord 7(1):7–12. doi:10.14802/jmd.14002

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, Broughton E, Hagan H, Carroll C (2014) Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127(2):235–241. doi:10.1007/s00401-013-1214-6

    Article  CAS  PubMed  Google Scholar 

  106. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutierrez C, Micheli FE, Benarroch EE (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260(5):1332–1338. doi:10.1007/s00415-012-6801-2

    Article  CAS  PubMed  Google Scholar 

  107. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. doi:10.1002/glia.20467

    Article  PubMed  PubMed Central  Google Scholar 

  108. Haag LM, Siegmund B (2015) Intestinal microbiota and the innate immune system—a crosstalk in Crohn’s disease pathogenesis. Front Immunol 6:489. doi:10.3389/fimmu.2015.00489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Consortium NIG, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBDC, Wellcome Trust Case Control C, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962. doi:10.1038/ng.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kumar V, Mack DR, Marcil V, Israel D, Krupoves A, Costea I, Lambrette P, Grimard G, Dong J, Seidman EG, Amre DK, Levy E (2013) Genome-wide association study signal at the 12q12 locus for Crohn’s disease may represent associations with the MUC19 gene. Inflamm Bowel Dis 19(6):1254–1259. doi:10.1097/MIB.0b013e318281f454

    Article  PubMed  Google Scholar 

  111. Zhang Q, Pan Y, Yan R, Zeng B, Wang H, Zhang X, Li W, Wei H, Liu Z (2015) Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol 16(9):918–926. doi:10.1038/ni.3233

    Article  CAS  PubMed  Google Scholar 

  112. de Lange KM, Barrett JC (2015) Understanding inflammatory bowel disease via immunogenetics. J Autoimmun 64:91–100. doi:10.1016/j.jaut.2015.07.013

    Article  PubMed  CAS  Google Scholar 

  113. Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, Nakamura Y, Kamatani N, Kubo M (2011) Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 17(12):2407–2415. doi:10.1002/ibd.21651

    Article  PubMed  Google Scholar 

  114. Heckman MG, Schottlaender L, Soto-Ortolaza AI, Diehl NN, Rayaprolu S, Ogaki K, Fujioka S, Murray ME, Cheshire WP, Uitti RJ, Wszolek ZK, Farrer MJ, Sailer A, Singleton AB, Chinnery PF, Keogh MJ, Gentleman SM, Holton JL, Aoife K, Mann DM, Al-Sarraj S, Troakes C, Dickson DW, Houlden H, Ross OA (2014) LRRK2 exonic variants and risk of multiple system atrophy. Neurology 83(24):2256–2261. doi:10.1212/WNL.0000000000001078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, Marroquin N, Nordin F, Hubers A, Weydt P, Pinto S, Press R, Millecamps S, Molko N, Bernard E, Desnuelle C, Soriani MH, Dorst J, Graf E, Nordstrom U, Feiler MS, Putz S, Boeckers TM, Meyer T, Winkler AS, Winkelman J, de Carvalho M, Thal DR, Otto M, Brannstrom T, Volk AE, Kursula P, Danzer KM, Lichtner P, Dikic I, Meitinger T, Ludolph AC, Strom TM, Andersen PM, Weishaupt JH (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18(5):631–636. doi:10.1038/nn.4000

    Article  CAS  PubMed  Google Scholar 

  116. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, Josephs KA, Parisi JE, Petersen RC, Boylan KB, Boeve BF, Graff-Radford NR, Veltman JA, Gilissen C, Murray ME, Dickson DW, Rademakers R (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130(1):77–92. doi:10.1007/s00401-015-1436-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

ND is funded by the Michael J. Fox Foundation, the Shake It Up Australia Foundation, Parkinson’s NSW, and the National Health and Medical Research Council. I thank Heidi Cartwright for the figure preparation and Glenda Halliday for the helpful comments on the manuscript.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas L. Dzamko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dzamko, N.L. (2017). LRRK2 and the Immune System. In: Rideout, H. (eds) Leucine-Rich Repeat Kinase 2 (LRRK2). Advances in Neurobiology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-49969-7_7

Download citation

Publish with us

Policies and ethics