Skip to main content

Exploring the Role of Secondary Metabolites of Trichoderma in Tripartite Interaction with Plant and Pathogens

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Exploitation of agriculturally important microorganisms in plant growth promotion and antagonistic potential is a well-investigated area. Trichoderma spp. are widely acknowledged for their potential to parasitize plant pathogenic fungi and have been efficiently utilized for biocontrol of wide range of seed and soil-borne phytopathogens. The antagonistic activity of Trichoderma spp. is largely credited to production of various antimicrobial secondary metabolites and has also been reported for plant growth promotion, management of the phytopathogens, and induction of systemic resistance in plants. Secondary metabolites-based formulation may have an additional benefit of longer shelf-life and immediate effect in comparison to spore-based formulations. Hence, this chapter will focus on the role of biosynthesized antimicrobial secondary metabolites of Trichoderma in tripartite interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts AW (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethyl glutaryl-coenzyme A reductase and a cholesterol lowering agent. Proc Natl Acad Sci U S A 77:3957–3961

    Article  CAS  Google Scholar 

  • Almassi F, Ghisalberti EL, Narbey MJ (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402

    Article  CAS  Google Scholar 

  • Astudillo L, Schmeda-Hirschmann G, Soto R (2000) Acetophenone derivatives from Chilean isolated of Trichoderma pseudokoningii Rifai. World J Microbiol Biotechnol 16:585–587

    Article  CAS  Google Scholar 

  • Benitez T, Rincon AM (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, HB S, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Google Scholar 

  • Blight MM, Grove JF (1986) Viridin. Structures of the analogs virone and wortmannolone. J Chem Soc Perkin Trans 1:1317–1322

    Article  Google Scholar 

  • Brenner ML (1981) Modern methods for plant growth substance analysis. Annu Rev Plant Physiol 32:511–538

    Article  CAS  Google Scholar 

  • Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    Article  CAS  Google Scholar 

  • Brian PW, Hemming HG (1945) Gliotoxin, a fungistatic metabolic product of Trichoderma viride. Ann Appl Biol 32:214–220

    Article  CAS  Google Scholar 

  • Brian PW, McGowan JC (1945) Viridin a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    Article  CAS  Google Scholar 

  • Brueckner H, Graf H, Bokel M (1984) Paracels in, characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Experientia 40:1189–1197

    Article  CAS  Google Scholar 

  • Chen F, D’Auria JC, Tholl D (2003) An Arabidopsis thaliana gene for methyl salicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    Article  CAS  Google Scholar 

  • Chiang Y, Lee K, Sanchez JF (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4:1505–1510

    CAS  Google Scholar 

  • Claydon N, Hanson JR, Truneh A (1999) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803

    Article  Google Scholar 

  • Cleland R (1972) The dosage–response curve for auxin-induced cell elongation: a re-evaluation. Planta 104:1–9

    Article  CAS  Google Scholar 

  • Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3627882, 14 Dec 1971

    Google Scholar 

  • Contreras-Cornejo HA, Macìas-Rodrìguez L, Cortés-Penagos C (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM (1991) Biological activity of (−) harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55:2629–2631

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Yagen B (1991a) Koninginin B: a biologically active congener of koninginin A from Trichoderma koningii. J Agric Food Chem 39:977–980

    Article  CAS  Google Scholar 

  • Cutler HG, Jacyno JM, Phillips RS (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem Tokyo 55:243–244

    CAS  Google Scholar 

  • Degenkolb T, Gräfenhan T, Nirenberg HI (2006) Trichoderma brevicompactum Complex: rich source of novel and recurrent plant-protective polypeptide antibiotics. J Agric Food Chem 54:7047–7061

    Article  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885

    Article  Google Scholar 

  • Dunlop RW, Simon A, Sivasithamparam K (1989) An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52:67–74

    Article  CAS  Google Scholar 

  • El-Hasan A, Buchenauer H (2009) Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defense responses in maize. J Phytopathol 157:697–707

    Article  CAS  Google Scholar 

  • Endo A, Monacolin K (1979) A new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854

    Article  CAS  Google Scholar 

  • Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot 29:1346–1348

    Article  CAS  Google Scholar 

  • Endo A, Hasumi K, Sakai K (1985) Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot 38:920–925

    Article  CAS  Google Scholar 

  • Engelberth J, Koch T, Schuler G (2000) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  Google Scholar 

  • Evidente A, Cabras A, Maddau L (2003) Viride Pyronone, a new antifungal 6 substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    Article  CAS  Google Scholar 

  • Favilla M, Macchia L, Gallo A (2006) Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food Chem Toxicol 44:1922–1931

    Article  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fujita T, Wada S, Iida A (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins I and II from Trichoderma viride. Chem Pharm Bull 42:489–494

    Article  CAS  Google Scholar 

  • Fujiwara A, Okuda T, Masuda S (1982) Isonitrile antibiotics, a new class of antibiotics with an isonitrile group. I. Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46:1803–1809

    CAS  Google Scholar 

  • Garo E, Starks CM, Jensen PR (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichodermavirens. J Nat Prod 66:423–426

    Article  CAS  Google Scholar 

  • Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Gliocladium. Curr Med Chem 1:343–374

    CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Article  CAS  Google Scholar 

  • Ghisalberti EL, Hockless DCR, Rowland C (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694

    Article  CAS  Google Scholar 

  • Golder WS, Watson TR (1980) Lanosterol derivatives as precursors in the biosynthesis of viridin. J Chem Soc Perkin Trans 1:422–425

    Article  Google Scholar 

  • Hanson JR (2003) Natural products: the secondary metabolites, vol 17. Royal Society of Chemistry, Cambridge, p 147

    Google Scholar 

  • Hanson JR (2008) The chemistry of fungi. Royal Society of Chemistry, Cambridge, p 204

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A (2004) Trichoderma species opportunistic, a virulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Harris GH, Jones ETT, Meinz MS (1993) Isolation and structure elucidation of viridio fungins A, B and C. Tetrahedron Lett 34:5235–5238

    Article  CAS  Google Scholar 

  • Heraux FMG, Hallett SG, Ragothama KG (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. HortScience 40:1394–1397

    Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: GE H, CP K (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Howell CR (1999) Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia 91:930–934

    Article  Google Scholar 

  • Huang Q, Tezuka Y, Hatanaka Y (1995a) Studies on metabolites of mycoparasitic fungi: III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038

    Article  CAS  Google Scholar 

  • Huang Q, Tezuka Y, Kikuchi T (1995b) Studies on metabolites of mycoparasitic fungi: II. Metabolites of Trichoderma koningii. Chem Pharm Bull 43:223–239

    Article  CAS  Google Scholar 

  • Itoh Y, Takahashi S, Haneishi T (1980) Structure of heptilidic acid, a new sesquiterpene antibiotic from fungi. J Antibiot 33:525–526

    Article  CAS  Google Scholar 

  • Javaid A, Ali S (2011) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25:730–740

    Article  CAS  Google Scholar 

  • Jaworski A, Kirschbaum J, Bruckner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5:341–351

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  Google Scholar 

  • Keswani C (2015a) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Ideas. 10.5281/zenodo.15571

    Google Scholar 

  • Keswani C (2015b) Proteomics studies of thermotolerant strain of Trichoderma spp. Ph.D. Thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30

    Article  Google Scholar 

  • Keswani C, Mishra S, Sarma BK (2014) Unraveling the efficient application of secondary metabolites of various Trichoderma. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  Google Scholar 

  • Krause C, Kirschbaum J, Jung G (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327

    Article  CAS  Google Scholar 

  • Kubicek CP, Estrella AH, Seiboth VS (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  Google Scholar 

  • Lee CH, Chung MC, Lee HJ (1997) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. Taxonomy, fermentation, isolation and biological activities. J Antibiot 50:469–473

    Article  CAS  Google Scholar 

  • Luo Y, Zhang D, Dong XW (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 13:120–126

    Article  CAS  Google Scholar 

  • Macias FA, Varela RM, Simonet AM (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200

    Article  CAS  Google Scholar 

  • Malmierca MG, McCormick SP, Cardoza RE (2015) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant Microbe Interact 28(11):1181–1197

    CAS  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E (2002) Trichosetin, anovel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseuscallus. Z Naturforsch C J Biosci 57:465–470

    CAS  Google Scholar 

  • Meyer CE (1966) U-21,963, a new antibiotic. II. Isolation and characterization. Appl Microbiol 14:511–512

    CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C (2015) Harnessing plant-microbe interaction for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Mukherjee PK, Buensanteai N, Moran-Diez ME (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  Google Scholar 

  • Mukhopadhyay T, Roy K, Sawant SN (1996) On an unstable antifungal metabolite from Trichoderma koningii isolation and structure elucidation of a new cyclopentenone derivative (3-dimethylamino-5-hydroxy-5vinyl-2-cyclopenten-1-one). J Antibiot 49:210–211

    Article  CAS  Google Scholar 

  • Nakano H, Hara M, Mejiro T (1990) DC1149B, DC1149R and their manufacture with Trichoderma. JP Patent 02218686

    Google Scholar 

  • Nobuhara M, Tazima H, Shudo K (1976) A fungal metabolite, novel isocyanoepoxide. Chem Pharm Bull 24:832–834

    Article  CAS  Google Scholar 

  • Oh SU, Lee SJ, Kim JH (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64

    Article  CAS  Google Scholar 

  • Ordentlich A, Wiesman Z, Gottlieb HE (1992) Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486

    Article  CAS  Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995a) Koninginin C: a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1126–1127

    Article  CAS  Google Scholar 

  • Parker SR, Cutler HG, Schreiner PR (1995b) Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1747–1749

    Article  CAS  Google Scholar 

  • Parker SR, Cutler HG, Jacyno JM (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    Article  CAS  Google Scholar 

  • Poiriera L, Quinioub F, Ruiza N (2007) Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. Aquat Toxicol 83:254–262

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R et al (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Ruegger A, Kuhn M, Lichti H (1976) Cyclosporin A, a peptide metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity. Helv Chim Acta 59:1075–1092

    Article  CAS  Google Scholar 

  • Sarma BK, Yadav SK, Singh S (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-a-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Article  CAS  Google Scholar 

  • Simon A, Dunlop RW, Ghisalberti EL (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264

    Article  CAS  Google Scholar 

  • Singh HB (2006) Trichoderma: a boon for biopesticides industry. J Mycol Plant Pathol 36:373–384

    Google Scholar 

  • Singh HB (2014a) Management of plant pathogens with microorganisms. Proc Indian Natl Sci Acad 80:443–454

    Article  Google Scholar 

  • Singh S, Dureja P, Tanwar RS (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29

    CAS  Google Scholar 

  • Singh HB, Singh BN, Singh SP (2012) Exploring different avenues of Trichoderma as a potent bio-fungicidal and plant growth promoting candidate-an overview. Rev Plant Pathol 5:315–426

    Google Scholar 

  • Singh HB, Singh A, Sarma BK (2014) Trichoderma viride 2% WP (Strain No. BHU-2953) formulation suppresses tomato wilt caused by Fusarium oxysporum f. sp. lycopersici and chilli damping-off caused by Pythium aphanidermatum effectively under different agroclimatic conditions. Int J Agric Environ Biotechnol 7:313–320

    Article  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Sperry S, Samuels GJ, Crews P (1998) Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclon a marine sponge. J Org Chem 63:10011–10014

    Article  CAS  Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    Article  CAS  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GCMS. J Microbiol Methods 81:187–193

    Article  CAS  Google Scholar 

  • Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162

    Article  CAS  Google Scholar 

  • Thimann KV (1937) On the nature of inhibitions caused by auxin. Am J Bot 24:407–412

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD (2007) Antagonistic fungi, Trichoderma spp. Panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vicente MF, Cabello A, Platas G (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    Article  CAS  Google Scholar 

  • Vinale F, Marra R, Scala F (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K (2009a) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035

    Article  CAS  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K (2009b) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  Google Scholar 

  • Vinale F, Arjona GI, Nigro M (2012a) Cerinolactone, a hydroxylactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL (2012b) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550

    CAS  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y (2007) The 18mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746

    Article  CAS  Google Scholar 

  • Watts R, Dahiya J, Chaudhary K (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84

    Article  CAS  Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 34:1153

    Google Scholar 

  • Weindling R, Emerson O (1936) The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26:1068–1070

    CAS  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 9–22

    Chapter  Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, pp 107–130

    Chapter  Google Scholar 

  • Woo SL, Scala F, Ruocco M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  Google Scholar 

  • Worasatit N, Sivasithamparam K, Ghisalberti EL (1994) Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363

    Article  CAS  Google Scholar 

  • Yamano T, Hemmi S, Yamamoto I (1970) Trichoviridin, a new antibiotic. JP Patent 45015435

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harikesh Bahadur Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Keswani, C., Bisen, K., Chitara, M.K., Sarma, B.K., Singh, H.B. (2017). Exploring the Role of Secondary Metabolites of Trichoderma in Tripartite Interaction with Plant and Pathogens. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_4

Download citation

Publish with us

Policies and ethics