Skip to main content

Electrolyte Disturbances and Critical Care Seizures

  • Chapter
  • First Online:
Seizures in Critical Care

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Electrolyte disorders are common in critically ill patients. The brain is only partially protected from these imbalances by the blood–brain barrier. Neuronal excitability and synaptic transmissions are affected by changes in extracellular ion concentration and osmolality. Hyponatremia is by far the most common cause of seizures due to an electrolyte imbalance. The risk depends on the severity and the rate of onset. Prompt recognition and careful treatment are required to avoid irreversible complications. Seizures can also occur in the setting of hypernatremia but are most often due either to an extra-pontine demyelination syndrome or an excessively rapid correction of sodium levels. Hypocalcemia can also cause seizures, mainly in neonates. Hypercalcemia and hypomagnesemia are also associated with acute seizures, although a direct causal relationship is less likely and associated complications, especially a posterior reversible encephalopathy syndrome, should be actively sought as an alternative etiology. Acid-base disorders are common in the critically ill but they do not appear to be a major cause of acute seizures. Acute acidosis can be the consequence of seizures or suggests an acute intoxication as the etiology. On the other hand, acute inhalation of 5% CO2 is a potent anti-seizure agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron R, Freebairn R. Electrolyte disorders in the critically ill. Anaesth Intensive Care Med. 2010;11:523–8. doi:10.1016/j.mpaic.2010.09.010.

    Article  Google Scholar 

  2. Annegers JF, Hauser WA, Lee JR, Rocca WA. Incidence of acute symptomatic seizures in Rochester, Minnesota, 1935–1984. Epilepsia. 1995;36:327–33.

    Article  CAS  PubMed  Google Scholar 

  3. Wijdicks EF, Sharbrough FW. New-onset seizures in critically ill patients. Neurology. 1993;43:1042–4.

    Article  CAS  PubMed  Google Scholar 

  4. Fields MC, Labovitz DL, French JA. Hospital-onset seizures: an inpatient study. JAMA Neurol. 2013;70:360–4. doi:10.1001/2013.jamaneurol.337.

    Article  PubMed  Google Scholar 

  5. Narayanan JT, Murthy JMK. New-onset acute symptomatic seizure in a neurological intensive care unit. Neurol India. 2007;55:136–40.

    Article  PubMed  Google Scholar 

  6. Sandler DL, Burchfield DJ, Riley WJ, Drummond WH. A comparison of CSF and serum magnesium levels in new born NICU infants. Seattle: Society for Pediatric Research; 1995.

    Google Scholar 

  7. Pasantes-Morales H, Tuz K. Volume changes in neurons: hyperexcitability and neuronal death. Contrib Nephrol. 2006;152:221–40. doi:10.1159/000096326.

    Article  CAS  PubMed  Google Scholar 

  8. Rosen AS, Andrew RD. Osmotic effects upon excitability in rat neocortical slices. Neuroscience. 1990;38:579–90.

    Article  CAS  PubMed  Google Scholar 

  9. Somjen GG. Ions in the brain: normal function, seizures, and stroke. New York: OUP; 2004.

    Google Scholar 

  10. Schwartzkroin PA, Baraban SC, Hochman DW. Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res. 1998;32:275–85.

    Article  CAS  PubMed  Google Scholar 

  11. Somjen GG. Low external NaCl concentration and low osmolarity enhance voltage-gated Ca currents but depress K currents in freshly isolated rat hippocampal neurons. Brain Res. 1999;851:189–97.

    Article  CAS  PubMed  Google Scholar 

  12. Chebabo SR, Hester MA, Aitken PG, Somjen GG. Hypotonic exposure enhances synaptic transmission and triggers spreading depression in rat hippocampal tissue slices. Brain Res. 1995;695:203–16.

    Article  CAS  PubMed  Google Scholar 

  13. Andrew RD, Fagan M, Ballyk BA, Rosen AS. Seizure susceptibility and the osmotic state. Brain Res. 1989;498:175–80.

    Article  CAS  PubMed  Google Scholar 

  14. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci. 2004;61:657–68. doi:10.1007/s00018-003-3319-x.

    Article  CAS  PubMed  Google Scholar 

  15. Hyzinski-García MC, Vincent MY, Haskew-Layton RE, et al. Hypo-osmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures. J Neurochem. 2011;118:140–52. doi:10.1111/j.1471-4159.2011.07289.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Avoli M, Drapeau C, Perreault P, et al. Epileptiform activity induced by low chloride medium in the CA1 subfield of the hippocampal slice. J Neurophysiol. 1990;64:1747–57.

    CAS  PubMed  Google Scholar 

  17. Huang R, Somjen GG. Effects of hypertonia on voltage-gated ion currents in freshly isolated hippocampal neurons, and on synaptic currents in neurons in hippocampal slices. Brain Res. 1997;748:157–67.

    Article  CAS  PubMed  Google Scholar 

  18. Hille B, Woodhull AM, Shapiro BI. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond Ser B Biol Sci. 1975;270:301–18.

    Article  CAS  Google Scholar 

  19. Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro. 2015; doi:10.1177/1759091415578050.

    Google Scholar 

  20. Agopyan N, Avoli M. Synaptic and non-synaptic mechanisms underlying low calcium bursts in the in vitro hippocampal slice. Exp Brain Res. 1988;73:533–40.

    Article  CAS  PubMed  Google Scholar 

  21. Han P, Trinidad BJ, Shi J. Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro. 2015;7 doi:10.1177/1759091415578050.

  22. Roper SN, Obenaus A, Dudek FE. Increased propensity for nonsynaptic epileptiform activity in immature rat hippocampus and dentate gyrus. J Neurophysiol. 1993;70:857–62.

    CAS  PubMed  Google Scholar 

  23. Isaev D, Ivanchick G, Khmyz V, et al. Surface charge impact in low-magnesium model of seizure in rat hippocampus. J Neurophysiol. 2012;107:417–23. doi:10.1152/jn.00574.2011.

    Article  CAS  PubMed  Google Scholar 

  24. Tancredi V, Avoli M, Hwa GG. Low-magnesium epilepsy in rat hippocampal slices: inhibitory postsynaptic potentials in the CA1 subfield. Neurosci Lett. 1988;89:293–8.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA. Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 1986;398:215–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hallak M. Effect of parenteral magnesium sulfate administration on excitatory amino acid receptors in the rat brain. Magnese Res Off Organ Int Soc Dev Res Magnes. 1998;11:117–31.

    CAS  Google Scholar 

  27. Del Castillo J, Engbaek L. The nature of the neuromuscular block produced by magnesium. J Physiol. 1954;124:370–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katz B. Nerve, muscle, and synapse. New York: McGraw-Hill; 1966.

    Google Scholar 

  29. Somjen GG. Ions in the brain: normal function, seizures, and stroke. New York: Oxford University Press; 2004.

    Google Scholar 

  30. Hille B. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J. 1978;22:283–94. doi:10.1016/S0006-3495(78)85489-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zito K, Scheuss V, Knott G, et al. Rapid functional maturation of nascent dendritic spines. Neuron. 2009;61:247–58. doi:10.1016/j.neuron.2008.10.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng Z, Durand DM. Suppression of excitatory synaptic transmission can facilitate low-calcium epileptiform activity in the hippocampus in vivo. Brain Res. 2004;1030:57–65. doi:10.1016/j.brainres.2004.09.063.

    Article  CAS  PubMed  Google Scholar 

  33. Ruusuvuori E, Kaila K. Carbonic anhydrases and brain pH in the control of neuronal excitability. Subcell Biochem. 2014;75:271–90. doi:10.1007/978-94-007-7359-2_14.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu KS, Liang YC, Huang CC. Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices. J Neurosci Res. 2000;62:403–15.

    Article  CAS  PubMed  Google Scholar 

  35. Walz W, Harold DE. Brain lactic acidosis and synaptic function. Can J Physiol Pharmacol. 1990;68:164–9.

    Article  CAS  PubMed  Google Scholar 

  36. Velísek L. Extracellular acidosis and high levels of carbon dioxide suppress synaptic transmission and prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Hippocampus. 1998;8:24–32. doi:10.1002/(sici)1098-1063(1998)8:1<24::aid-hipo3>3.3.co;2-2.

    Article  PubMed  Google Scholar 

  37. de Curtis M, Manfridi A, Biella G. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J Neurosci. 1998;18:7543–51.

    PubMed  Google Scholar 

  38. Pavlov I, Kaila K, Kullmann DM, Miles R. Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions? J Physiol. 2013;591:765–74. doi:10.1113/jphysiol.2012.237958.

    Article  CAS  PubMed  Google Scholar 

  39. Vandergheynst F, Sakr Y, Felleiter P, et al. Incidence and prognosis of dysnatraemia in critically ill patients: analysis of a large prevalence study. Eur J Clin Investig. 2013;43:933–48. doi:10.1111/eci.12123.

    Article  CAS  Google Scholar 

  40. Funk G-C, Lindner G, Druml W, et al. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010;36:304–11. doi:10.1007/s00134-009-1692-0.

    Article  PubMed  Google Scholar 

  41. Pollock AS, Arieff AI. Abnormalities of cell volume regulation and their functional consequences. Am J Phys. 1980;239:F195–205.

    CAS  Google Scholar 

  42. Tisdall M, Crocker M, Watkiss J, Smith M. Disturbances of sodium in critically ill adult neurologic patients: a clinical review. J Neurosurg Anesthesiol. 2006;18:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sakr Y, Rother S, Ferreira AMP, et al. Fluctuations in serum sodium level are associated with an increased risk of death in surgical ICU patients. Crit Care Med. 2013;41:133–42. doi:10.1097/CCM.0b013e318265f576.

    Article  CAS  PubMed  Google Scholar 

  44. Laville M, Burst V, Peri A, Verbalis JG. Hyponatremia secondary to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH): therapeutic decision-making in real-life cases. Clin Kidney J. 2013;6:i1–i20. doi:10.1093/ckj/sft113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sherlock M, O’Sullivan E, Agha A, et al. Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J. 2009;85:171–5. doi:10.1136/pgmj.2008.072819.

    Article  CAS  PubMed  Google Scholar 

  46. Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18:406–16. doi:10.1007/s12028-012-9805-y.

    Article  PubMed  Google Scholar 

  47. Darmon M, Diconne E, Souweine B, et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care Lond Engl. 2013;17:R12. doi:10.1186/cc11937.

    Article  Google Scholar 

  48. Stelfox HT, Ahmed SB, Khandwala F, et al. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care Lond Engl. 2008;12:R162. doi:10.1186/cc7162.

    Article  Google Scholar 

  49. Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012;125:677–84. doi:10.1161/CIRCULATIONAHA.111.065391.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Padhi R, Panda BN, Jagati S, Patra SC. Hyponatremia in critically ill patients. Indian J Crit Care Med. 2014;18:83–7. doi:10.4103/0972-5229.126077.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sodium disorders in critically ill neurologic patients: a focus on pharmacologic management. OA Critical Care. http://www.oapublishinglondon.com/article/1300. Accessed 20 Jul 2015

    Google Scholar 

  52. Halawa I, Andersson T, Tomson T. Hyponatremia and risk of seizures: a retrospective cross-sectional study. Epilepsia. 2011;52:410–3. doi:10.1111/j.1528-1167.2010.02939.x.

    PubMed  Google Scholar 

  53. Ko S-H, Lim C-H, Kim J-Y, et al. Case of inappropriate ADH syndrome: hyponatremia due to polyethylene glycol bowel preparation. World J Gastroenterol WJG. 2014;20:12350–4. doi:10.3748/wjg.v20.i34.12350.

    Article  CAS  PubMed  Google Scholar 

  54. Richter S, Betz C, Geiger H. Severe hyponatremia with pulmonary and cerebral edema in an Ironman triathlete. Dtsch Med Wochenschr. 2007;132:1829–32. doi:10.1055/s-2007-984973.

    Article  CAS  PubMed  Google Scholar 

  55. Sue Y-M, Lee Y-L, Huang J-J. Acute hyponatremia, seizure, and rhabdomyolysis after ecstasy use. J Toxicol Clin Toxicol. 2002;40:931–2.

    Article  PubMed  Google Scholar 

  56. Gill M, McCauley M. Psychogenic polydipsia: the result, or cause of, deteriorating psychotic symptoms? A case report of the consequences of water intoxication. Case Rep Psychiatry. 2015;2015:846459. doi:10.1155/2015/846459.

    PubMed  PubMed Central  Google Scholar 

  57. Ganong CA, Kappy MS. Cerebral salt wasting in children. The need for recognition and treatment. Am J Dis Child. 1960;147:167–9.

    Article  Google Scholar 

  58. Çelik T, Tolunay O, Tolunay İ, Çelik Ü. Cerebral salt wasting in status epilepticus: two cases and review of the literature. Pediatr Neurol. 2014;50:397–9. doi:10.1016/j.pediatrneurol.2013.11.019.

    Article  PubMed  Google Scholar 

  59. Peri A, Pirozzi N, Parenti G, et al. Hyponatremia and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Endocrinol Investig. 2010;33:671–82. doi:10.1007/BF03346668.

    Article  CAS  Google Scholar 

  60. Oh JY, Shin JI. Syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome: similarities and differences. Front Pediatr. 2014;2:146. doi:10.3389/fped.2014.00146.

    PubMed  Google Scholar 

  61. Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain J Neurol. 2004;127:701–12. doi:10.1093/brain/awh077.

    Article  Google Scholar 

  62. Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ, et al. Cerebral salt wasting syndrome: review. Eur J Intern Med. 2008;19:249–54. doi:10.1016/j.ejim.2007.06.019.

    Article  PubMed  Google Scholar 

  63. Betjes MGH. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome. Eur J Intern Med. 2002;13:9–14.

    Article  CAS  PubMed  Google Scholar 

  64. Diringer MN, Wu KC, Verbalis JG, Hanley DF. Hypervolemic therapy prevents volume contraction but not hyponatremia following subarachnoid hemorrhage. Ann Neurol. 1992;31:543–50. doi:10.1002/ana.410310513.

    Article  CAS  PubMed  Google Scholar 

  65. Marupudi NI, Mittal S. Diagnosis and management of hyponatremia in patients with aneurysmal subarachnoid hemorrhage. J Clin Med. 2015;4:756–67. doi:10.3390/jcm4040756.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hasan D, Wijdicks EF, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol. 1990;27:106–8. doi:10.1002/ana.410270118.

    Article  CAS  PubMed  Google Scholar 

  67. Verbalis JG. Control of brain volume during hypoosmolality and hyperosmolality. Adv Exp Med Biol. 2006;576:113–29. discussion 361–363 doi:10.1007/0-387-30172-0_8.

    Article  CAS  PubMed  Google Scholar 

  68. Rabinstein AA, Wijdicks EFM. Hyponatremia in critically ill neurological patients. Neurologist. 2003;9:290–300. doi:10.1097/01.nrl.0000095258.07720.89.

    Article  PubMed  Google Scholar 

  69. Sterns RH, Thomas DJ, Herndon RM. Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int. 1989;35:69–75.

    Article  CAS  PubMed  Google Scholar 

  70. Van Amelsvoort T, Bakshi R, Devaux CB, Schwabe S. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia. 1994;35:181–8.

    Article  CAS  PubMed  Google Scholar 

  71. Azuma H, Akechi T, Furukawa TA. Absence status associated with focal activity and polydipsia-induced hyponatremia. Neuropsychiatr Dis Treat. 2008;4:495–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Primavera A, Fonti A, Giberti L, Cocito L. Recurrent absence status epilepticus and hyponatremia in a patient with polydipsia. Biol Psychiatry. 1995;38:189–91. doi:10.1016/0006-3223(95)00145-7.

    Article  CAS  PubMed  Google Scholar 

  73. Barolomei F, Gastaut JL. Complex partial status epilepticus provoked by hyponatremia. Eur Neurol. 1998;40:53–4.

    CAS  PubMed  Google Scholar 

  74. Sarnaik AP, Meert K, Hackbarth R, Fleischmann L. Management of hyponatremic seizures in children with hypertonic saline: a safe and effective strategy. Crit Care Med. 1991;19:758–62.

    Article  CAS  PubMed  Google Scholar 

  75. Sharf RE. Seizure from hyponatremia in infants. Early recognition and treatment. Arch Fam Med. 1993;2:647–52.

    Article  CAS  PubMed  Google Scholar 

  76. Bruce RC, Kliegman RM. Hyponatremic seizures secondary to oral water intoxication in infancy: association with commercial bottled drinking water. Pediatrics. 1997;100:E4.

    Article  CAS  PubMed  Google Scholar 

  77. Farrar HC, Chande VT, Fitzpatrick DF, Shema SJ. Hyponatremia as the cause of seizures in infants: a retrospective analysis of incidence, severity, and clinical predictors. Ann Emerg Med. 1995;26:42–8. doi:10.1016/S0196-0644(95)70236-9.

    Article  CAS  PubMed  Google Scholar 

  78. Hanna S, Tibby SM, Durward A, Murdoch IA. Incidence of hyponatraemia and hyponatraemic seizures in severe respiratory syncytial virus bronchiolitis. Acta Paediatr Oslo Nor. 2007;92:430–4.

    Article  Google Scholar 

  79. Hardesty DA, Kilbaugh TJ, Storm PB. Cerebral salt wasting syndrome in post-operative pediatric brain tumor patients. Neurocrit Care. 2012;17:382–7. doi:10.1007/s12028-011-9618-4.

    Article  PubMed  Google Scholar 

  80. Hoorn EJ, Halperin ML, Zietse R. Diagnostic approach to a patient with hyponatraemia: traditional versus physiology-based options. QJM Mon J Assoc Physicians. 2005;98:529–40. doi:10.1093/qjmed/hci081.

    Article  CAS  Google Scholar 

  81. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med. 2014;40:320–31. doi:10.1007/s00134-014-3210-2.

    Article  PubMed  Google Scholar 

  82. Carlotti AP, Bohn D, Rutka JT, et al. A method to estimate urinary electrolyte excretion in patients at risk for developing cerebral salt wasting. J Neurosurg. 2001;95:420–4. doi:10.3171/jns.2001.95.3.0420.

    Article  CAS  PubMed  Google Scholar 

  83. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol JASN. 1994;4:1522–30.

    CAS  PubMed  Google Scholar 

  84. Sterns RH, Riggs JE, Schochet SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314:1535–42. doi:10.1056/NEJM198606123142402.

    Article  CAS  PubMed  Google Scholar 

  85. Karp BI, Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. Medicine (Baltimore). 1993;72:359–73.

    Article  CAS  Google Scholar 

  86. Sterns RH, Hix JK. Overcorrection of hyponatremia is a medical emergency. Kidney Int. 2009;76:587–9. doi:10.1038/ki.2009.251.

    Article  PubMed  Google Scholar 

  87. Mori T, Katayama Y, Kawamata T, Hirayama T. Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 1999;91:947–52. doi:10.3171/jns.1999.91.6.0947.

    Article  CAS  PubMed  Google Scholar 

  88. Decaux G. SIADH and vaptans. Ann Endocrinol. 2012;73:130–4. doi:10.1016/j.ando.2012.04.005.

    Article  Google Scholar 

  89. Palevsky PM, Bhagrath R, Greenberg A. Hypernatremia in hospitalized patients. Ann Intern Med. 1996;124:197–203.

    Article  CAS  PubMed  Google Scholar 

  90. Overgaard-Steensen C, Ring T. Clinical review: practical approach to hyponatraemia and hypernatraemia in critically ill patients. Crit Care Lond Engl. 2013;17:206. doi:10.1186/cc11805.

    Article  Google Scholar 

  91. Lindner G, Funk G-C. Hypernatremia in critically ill patients. J Crit Care. 2013;28:216.e11–20. doi:10.1016/j.jcrc.2012.05.001.

    CAS  Google Scholar 

  92. Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG. Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med. 1999;27:1105–8.

    Article  CAS  PubMed  Google Scholar 

  93. Waite MD, Fuhrman SA, Badawi O, et al. Intensive care unit-acquired hypernatremia is an independent predictor of increased mortality and length of stay. J Crit Care. 2013;28:405–12. doi:10.1016/j.jcrc.2012.11.013.

    Article  PubMed  Google Scholar 

  94. Kumar S, Berl T. Sodium. Lancet Lond Engl. 1998;352:220–8. doi:10.1016/S0140-6736(97)12169-9.

    Article  CAS  Google Scholar 

  95. Hoorn EJ, Betjes MGH, Weigel J, Zietse R. Hypernatraemia in critically ill patients: too little water and too much salt. Nephrol Dial Transplant. 2008;23:1562–8. doi:10.1093/ndt/gfm831.

    Article  PubMed  Google Scholar 

  96. Odier C, Nguyen DK, Panisset M. Central pontine and extrapontine myelinolysis: from epileptic and other manifestations to cognitive prognosis. J Neurol. 2010;257:1176–80. doi:10.1007/s00415-010-5486-7.

    Article  PubMed  Google Scholar 

  97. Brown WD, Caruso JM. Extrapontine myelinolysis with involvement of the hippocampus in three children with severe hypernatremia. J Child Neurol. 1999;14:428–33.

    Article  CAS  PubMed  Google Scholar 

  98. Hbibi M, Abourazzak S, Babakhouya A, et al. Severe hypernatremic dehydration associated with cerebral venous and aortic thrombosis in the neonatal period. BMJ Case Rep. 2012; doi:10.1136/bcr.07.2011.4426.

    PubMed  PubMed Central  Google Scholar 

  99. Fleischer LM, Wilson TA, Parker MM. Hypernatremic dehydration, diabetes insipidus, and cerebral venous sinus thrombosis in a neonate: a case report. J Med Case Rep. 2007;1:66. doi:10.1186/1752-1947-1-66.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Castilla-Guerra L, del Carmen Fernández-Moreno M, López-Chozas JM, Fernández-Bolaños R. Electrolytes disturbances and seizures. Epilepsia. 2006;47:1990–8. doi:10.1111/j.1528-1167.2006.00861.x.

    Article  CAS  PubMed  Google Scholar 

  101. Andreoli TE, Reeves WB, Bichet DG. Endocrine control of water balance. Compr Physiol. 2010; doi:10.1002/cphy.cp070314.

    Google Scholar 

  102. Welt LG, Orloff J, Kydd DM, Oltman JE. An example of cellular hyperosmolarity. J Clin Invest. 1950;29:935–9. doi:10.1172/JCI102328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gupta MM. Calcium imbalance in hypoparathyroidism. J Assoc Physicians India. 1991;39:616–8.

    CAS  PubMed  Google Scholar 

  104. Bhadada SK, Bhansali A, Upreti V, et al. Spectrum of neurological manifestations of idiopathic hypoparathyroidism and pseudohypoparathyroidism. Neurol India. 2011;59:586–9. doi:10.4103/0028-3886.84342.

    Article  PubMed  Google Scholar 

  105. Kelly A, Levine MA. Hypocalcemia in the critically ill patient. J Intensive Care Med. 2013;28:166–77. doi:10.1177/0885066611411543.

    Article  PubMed  Google Scholar 

  106. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J Kidney Dis Off J Natl Kidney Found. 2001;37:689–98.

    Article  CAS  Google Scholar 

  107. Steele T, Kolamunnage-Dona R, Downey C, et al. Assessment and clinical course of hypocalcemia in critical illness. Crit Care Lond Engl. 2013;17:R106. doi:10.1186/cc12756.

    Article  Google Scholar 

  108. Zhang Z, Xu X, Ni H, Deng H. Predictive value of ionized calcium in critically ill patients: an analysis of a large clinical database MIMIC II. PLoS One. 2014;9:e95204. doi:10.1371/journal.pone.0095204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Hästbacka J, Pettilä V. Prevalence and predictive value of ionized hypocalcemia among critically ill patients. Acta Anaesthesiol Scand. 2003;47:1264–9.

    Article  PubMed  Google Scholar 

  110. Chernow B, Zaloga G, McFadden E, et al. Hypocalcemia in critically ill patients. Crit Care Med. 1982;10:848–51.

    Article  CAS  PubMed  Google Scholar 

  111. Carlstedt F, Lind L, Rastad J, et al. Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients. Eur J Clin Investig. 1998;28:898–903.

    Article  CAS  Google Scholar 

  112. Milman S, Epstein E. Proton pump inhibitor-induced hypocalcemic seizure in a patient with hypoparathyroidism. Endocr Pract. 2010;17:104–7. doi:10.4158/EP10241.CR.

    Article  Google Scholar 

  113. Deroux A, Khouri C, Chabre O, et al. Severe acute neurological symptoms related to proton pump inhibitors induced hypomagnesemia responsible for profound hypoparathyroidism with hypocalcemia. Clin Res Hepatol Gastroenterol. 2014;38:e103–5. doi:10.1016/j.clinre.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  114. Maclsaac RJ, Seeman E, Jerums G. Seizures after alendronate. J R Soc Med. 2002;95:615–6.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsourdi E, Rachner TD, Gruber M, et al. Seizures associated with zoledronic acid for osteoporosis. J Clin Endocrinol Metab. 2011;96:1955–9. doi:10.1210/jc.2011-0418.

    Article  CAS  PubMed  Google Scholar 

  116. Cox RE. Hypoparathyroidism: an unusual cause of seizures. Ann Emerg Med. 1983;12:314–5.

    Article  CAS  PubMed  Google Scholar 

  117. Mrowka M, Knake S, Klinge H, et al. Hypocalcemic generalised seizures as a manifestation of iatrogenic hypoparathyroidism months to years after thyroid surgery. Epileptic Disord Int Epilepsy J Videotape. 2004;6:85–7.

    Google Scholar 

  118. Fonseca OA, Calverley JR. Neurological manifestations of hypoparathyroidism. Arch Intern Med. 1967;120:202–6.

    Article  CAS  PubMed  Google Scholar 

  119. Tsai P-L, Lian L-M, Chen W-H. Hypocalcemic seizure mistaken for idiopathic epilepsy in two cases of DiGeorge syndrome (chromosome 22q11 deletion syndrome). Acta Neurol Taiwanica. 2009;18:272–5.

    Google Scholar 

  120. Bindu M, Harinarayana CV. Hypoparathyroidism: a rare treatable cause of epilepsy–report of two cases. Eur J Neurol Off J Eur Fed Neurol Soc. 2006;13:786–8. doi:10.1111/j.1468-1331.2006.01287.x.

    CAS  Google Scholar 

  121. Kinoshita H, Kokudo T, Ide T, et al. A patient with DiGeorge syndrome with spina bifida and sacral myelomeningocele, who developed both hypocalcemia-induced seizure and epilepsy. Seizure. 2010;19:303–5. doi:10.1016/j.seizure.2010.04.005.

    Article  PubMed  Google Scholar 

  122. Cheung ENM, George SR, Andrade DM, et al. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome. Genet Med Off J Am Coll Med Genet. 2014;16:40–4. doi:10.1038/gim.2013.71.

    CAS  Google Scholar 

  123. Korkmaz HA, Dizdarer C, Ecevit CO. Hypocalcemic seizure in an adolescent with down syndrome: a manifestation of unrecognized celiac disease. Turk J Pediatr. 2013;55:536–8.

    PubMed  Google Scholar 

  124. Erdeve O, Atasay B, Arsan S, et al. Hypocalcemic seizure due to congenital rickets in the first day of life. Turk J Pediatr. 2007;49:301–3.

    PubMed  Google Scholar 

  125. Kossoff EH, Silvia MT, Maret A, et al. Neonatal hypocalcemic seizures: case report and literature review. J Child Neurol. 2002;17:236–9.

    Article  PubMed  Google Scholar 

  126. Korkmaz HA, Özkan B, Terek D, et al. Neonatal seizure as a manifestation of unrecognized maternal hyperparathyroidism. J Clin Res Pediatr Endocrinol. 2013;5:206–8. doi:10.4274/Jcrpe.1037.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Clarke PC, Carré IJ. Hypocalcemic, hypomagnesemic convulsions. J Pediatr. 1967;70:806–9.

    Article  CAS  PubMed  Google Scholar 

  128. Ali FE, Al-Bustan MA, Al-Busairi WA, Al-Mulla FA. Loss of seizure control due to anticonvulsant-induced hypocalcemia. Ann Pharmacother. 2004;38:1002–5. doi:10.1345/aph.1D467.

    Article  PubMed  Google Scholar 

  129. Dickerson RN, Alexander KH, Minard G, et al. Accuracy of methods to estimate ionized and “corrected” serum calcium concentrations in critically ill multiple trauma patients receiving specialized nutrition support. JPEN J Parenter Enteral Nutr. 2004;28:133–41.

    Article  CAS  PubMed  Google Scholar 

  130. Dickerson RN, Henry NY, Miller PL, et al. Low serum total calcium concentration as a marker of low serum ionized calcium concentration in critically ill patients receiving specialized nutrition support. Nutr Clin Pract. 2007;22:323–8.

    Article  PubMed  Google Scholar 

  131. Tartaglia F, Giuliani A, Sgueglia M, et al. Randomized study on oral administration of calcitriol to prevent symptomatic hypocalcemia after total thyroidectomy. Am J Surg. 2005;190:424–9. doi:10.1016/j.amjsurg.2005.04.017.

    Article  CAS  PubMed  Google Scholar 

  132. Biller J, Ferro JM. In: Aminoff J, Boller F, Swaab DF, editors. Neurologic aspects of systemic disease part II: handbook of clinical neurology: Newnes; 2014. Neurologic disorders of mineral metabolism and parathyroid disease. Agrawal L, Habib Z, Emanuele NV. Neurologic disorders of mineral metabolism and parathyroid disease. Handb Clin Neurol. 2014;120:737–48. doi: 10.1016/B978-0-7020-4087-0.00049-8.

    Google Scholar 

  133. Kline CA, Esekogwu VI, Henderson SO, Newton KI. Non-convulsive status epilepticus in a patient with hypocalcemia. J Emerg Med. 1998;16:715–8.

    Article  CAS  PubMed  Google Scholar 

  134. Zuckermann EC, Glaser GH. Anticonvulsive action of increased calcium concentration in cerebrospinal fluid. Arch Neurol. 1973;29:245–52.

    Article  CAS  PubMed  Google Scholar 

  135. Hariri A, Mount DB, Rastegar A. Disorders of calcium, phosphate, and magnesium metabolism. In: Mount DB, Sayegh MH, Singh AK, Core concepts in the disorders of fluid, electrolytes and acid-base balance. New York: Springer, 2013. P. 103–146.

    Google Scholar 

  136. TAD C, Kauffman RP, Myles TD. Primary hyperparathyroidism, hypercalcemic crisis and subsequent seizures occurring during pregnancy: a case report. J Matern-Fetal Neonatal Med. 2002;12:349–52. doi:10.1080/jmf.12.5.349.352.

    Article  Google Scholar 

  137. Hauser GJ, Gale AD, Fields AI. Immobilization hypercalcemia: unusual presentation with seizures. Pediatr Emerg Care. 1989;5:105–7.

    Article  CAS  PubMed  Google Scholar 

  138. Nordt SP, Williams SR, Clark RF. Pharmacologic misadventure resulting in hypercalcemia from vitamin D intoxication. J Emerg Med. 2002;22:302–3.

    Article  PubMed  Google Scholar 

  139. Dinnerstein E, McDonald BC, Cleavinger HB, et al. Mesial temporal sclerosis after status epilepticus due to milk alkali syndrome. Seizure. 2008;17:292–5. doi:10.1016/j.seizure.2007.07.013.

    Article  PubMed  Google Scholar 

  140. Kashouty R, Yono N, Al Samara M. Status epilepticus secondary to milk-alkali syndrome induced by hypercalcemia (oral antacids). Seizure. 2011;20:659–61. doi:10.1016/j.seizure.2011.03.011.

    Article  PubMed  Google Scholar 

  141. Chen T-H, Huang C-C, Chang Y-Y, et al. Vasoconstriction as the etiology of hypercalcemia-induced seizures. Epilepsia. 2004;45:551–4. doi:10.1111/j.0013-9580.2004.57003.x.

    Article  PubMed  Google Scholar 

  142. Kastrup O, Maschke M, Wanke I, Diener HC. Posterior reversible encephalopathy syndrome due to severe hypercalcemia. J Neurol. 2002;249:1563–6. doi:10.1007/s00415-002-0895-x.

    Article  CAS  PubMed  Google Scholar 

  143. Kaplan PW. Reversible hypercalcemic cerebral vasoconstriction with seizures and blindness: a paradigm for eclampsia? Clin EEG Electroencephalogr. 1998;29:120–3.

    Article  CAS  Google Scholar 

  144. Demir BC, Ozerkan K, Ozbek SE, et al. Comparison of magnesium sulfate and mannitol in treatment of eclamptic women with posterior reversible encephalopathy syndrome. Arch Gynecol Obstet. 2012;286:287–93. doi:10.1007/s00404-012-2268-8.

    Article  CAS  PubMed  Google Scholar 

  145. Fawcett WJ, Haxby EJ, Male DA. Magnesium: physiology and pharmacology. Br J Anaesth. 1999;83:302–20.

    Article  CAS  PubMed  Google Scholar 

  146. Soliman HM, Mercan D, Lobo SSM, et al. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31:1082–7. Springer, New York 2013 doi:10.1097/01.CCM.0000060867.17556.A0.

  147. Fairley J, Glassford NJ, Zhang L, Bellomo R. Magnesium status and magnesium therapy in critically ill patients: a systematic review. J Crit Care. 2015;30:1349. doi:10.1016/j.jcrc.2015.07.029.

    Article  CAS  PubMed  Google Scholar 

  148. Tong GM, Rude RK. Magnesium deficiency in critical illness. J Intensive Care Med. 2005;20:3–17. doi:10.1177/0885066604271539.

    Article  PubMed  Google Scholar 

  149. Huijgen HJ, Soesan M, Sanders R, et al. Magnesium levels in critically ill patients. What should we measure? Am J Clin Pathol. 2000;114:688–95. doi:10.1309/0Q7F-QTGM-6DPD-TLGY.

    Article  CAS  PubMed  Google Scholar 

  150. Iseri LT, Allen BJ, Brodsky MA. Magnesium therapy of cardiac arrhythmias in critical-care medicine. Magnesium. 1989;8:299–306.

    CAS  PubMed  Google Scholar 

  151. Saul RF, Selhorst JB. Downbeat nystagmus with magnesium depletion. Arch Neurol. 1981;38:650–2.

    Article  CAS  PubMed  Google Scholar 

  152. Kass L, Weekes J, Carpenter L. Effect of magnesium supplementation on blood pressure: a meta-analysis. Eur J Clin Nutr. 2012;66:411–8. doi:10.1038/ejcn.2012.4.

    Article  CAS  PubMed  Google Scholar 

  153. Schwartz RB, Feske SK, Polak JF, et al. Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology. 2000;217:371–6. doi:10.1148/radiology.217.2.r00nv44371.

    Article  CAS  PubMed  Google Scholar 

  154. Rude RK, Gruber HE, Norton HJ, et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int. 2006;17:1022–32. doi:10.1007/s00198-006-0104-3.

    Article  CAS  PubMed  Google Scholar 

  155. Sinert R, Zehtabchi S, Desai S, et al. Serum ionized magnesium and calcium levels in adult patients with seizures. Scand J Clin Lab Invest. 2007;67:317–26. doi:10.1080/00365510601051441.

    Article  CAS  PubMed  Google Scholar 

  156. Sood AK, Handa R, Malhotra RC, Gupta BS. Serum, CSF, RBC and urinary levels of magnesium and calcium in idiopathic generalised tonic clonic seizures. Indian J Med Res. 1993;98:152–4.

    CAS  PubMed  Google Scholar 

  157. Abdelmalik PA, Politzer N, Carlen PL. Magnesium as an effective adjunct therapy for drug resistant seizures. Can J Neurol Sci J Can Sci Neurol. 2012;39:323–7.

    Article  Google Scholar 

  158. Visser NA, Braun KPJ, Leijten FSS, et al. Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J Neurol. 2011;258:218–22. doi:10.1007/s00415-010-5721-2.

    Article  CAS  PubMed  Google Scholar 

  159. Lucas MJ, Leveno KJ, Cunningham FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med. 1995;333:201–5. doi:10.1056/NEJM199507273330401.

    Article  CAS  PubMed  Google Scholar 

  160. Duley L, Henderson-Smart DJ, Walker GJ, Chou D. Magnesium sulphate versus diazepam for eclampsia. Cochrane Database Syst Rev. 2010:CD000127. doi:10.1002/14651858.CD000127.pub2.

  161. Pande SD, Wee CK, Maw NN. Unusual case of hypomagnesaemia induced seizures. BMJ Case Rep. 2009;2009:bcr0620091933. doi:10.1136/bcr.06.2009.1933.

    Article  Google Scholar 

  162. Matthey F, Gelder CM, Schon FE. Isolated hypomagnesaemia presenting as focal seizures in diabetes mellitus. Br Med J (Clin Res Ed). 1986;293:1409.

    Article  CAS  Google Scholar 

  163. Fagan C, Phelan D. Severe convulsant hypomagnesaemia and short bowel syndrome. Anaesth Intensive Care. 2001;29:281–3.

    CAS  PubMed  Google Scholar 

  164. Gandhi NY, Sharif WK, Chadha S, Shakher J. A patient on long-term proton pump inhibitors develops sudden seizures and encephalopathy: an unusual presentation of hypomagnesaemia. Case Rep Gastrointest Med. 2012;2012:632721. doi:10.1155/2012/632721.

    PubMed  PubMed Central  Google Scholar 

  165. Visudhiphan P, Visudtibhan A, Chiemchanya S, Khongkhatithum C. Neonatal seizures and familial hypomagnesemia with secondary hypocalcemia. Pediatr Neurol. 2005;33:202–5. doi:10.1016/j.pediatrneurol.2005.03.009.

    Article  PubMed  Google Scholar 

  166. Viveros H, Somjen GG. Magnesium-calcium antagonism in the contraction of arterioles. Experientia. 1968;24:457–9.

    Article  CAS  PubMed  Google Scholar 

  167. Euser AG, Cipolla MJ. Magnesium sulfate for the treatment of eclampsia: a brief review. Stroke J Cereb Circ. 2009;40:1169–75. doi:10.1161/STROKEAHA.108.527788.

    Article  CAS  Google Scholar 

  168. Efstratiadis G, Sarigianni M, Gougourelas I. Hypomagnesemia and cardiovascular system. Hippokratia. 2006;10:147–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24:47–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shorvon SD, Andermann F, Guerrini R. The causes of epilepsy: common and uncommon causes in adults and children. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  171. Reddi PAS. Disorders of magnesium: hypomagnesemia. In: Fluid electrolyte acid-base disorders. New York, NY: Springer; 2014. p. 271–83.

    Chapter  Google Scholar 

  172. Gunnerson KJ, Kellum JA. Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care. 2003;9:468–73.

    Article  PubMed  Google Scholar 

  173. Mallat J, Barrailler S, Lemyze M, et al. Use of sodium-chloride difference and corrected anion gap as surrogates of Stewart variables in critically ill patients. PLoS One. 2013;8:e56635. doi:10.1371/journal.pone.0056635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Paz Y, Zegerman A, Sorkine P, Matot I. Severe acidosis does not predict fatal outcomes in intensive care unit patients: a retrospective analysis. J Crit Care. 2014;29:210–3. doi:10.1016/j.jcrc.2013.11.007.

    Article  PubMed  Google Scholar 

  175. Anderson LE, Henrich WL. Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J. 1987;80:729–33.

    Article  CAS  PubMed  Google Scholar 

  176. Fitzgibbons LJ, Snoey ER. Severe metabolic alkalosis due to baking soda ingestion: case reports of two patients with unsuspected antacid overdose. J Emerg Med. 1999;17:57–61.

    Article  CAS  PubMed  Google Scholar 

  177. Stephani J, Wagner M, Breining T, et al. Metabolic alkalosis, acute renal failure and epileptic seizures as unusual manifestations of an upside-down stomach. Case Rep Gastroenterol. 2012;6:452–8. doi:10.1159/000341509.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Perez GO, Oster JR, Rogers A. Acid-base disturbances in gastrointestinal disease. Dig Dis Sci. 1987;32:1033–43.

    Article  CAS  PubMed  Google Scholar 

  179. Kramer L, Tribl B, Gendo A, et al. Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatol Baltim Md. 2000;31:30–4. doi:10.1002/hep.510310107.

    Article  CAS  Google Scholar 

  180. During MJ, Fried I, Leone P, et al. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem. 1994;62:2356–61.

    Article  CAS  PubMed  Google Scholar 

  181. Holmes MD, Dewaraja AS, Vanhatalo S. Does hyperventilation elicit epileptic seizures? Epilepsia. 2004;45:618–20. doi:10.1111/j.0013-9580.2004.63803.x.

    Article  PubMed  Google Scholar 

  182. Raybarman C. Is hyperventilation an effective activating procedure in routine clinical EEG studies in children? J Child Neurol. 2009;24:1294–5. doi:10.1177/0883073809334383.

    Article  PubMed  Google Scholar 

  183. Ahdab R, Riachi N. Reexamining the added value of intermittent photic stimulation and hyperventilation in routine EEG practice. Eur Neurol. 2014;71:93–8. doi:10.1159/000353650.

    Article  PubMed  Google Scholar 

  184. Assenza G, Mecarelli O, Tombini M, et al. Hyperventilation induces sympathetic overactivation in mesial temporal epilepsy. Epilepsy Res. 2015;110:221–7. doi:10.1016/j.eplepsyres.2014.12.003.

    Article  PubMed  Google Scholar 

  185. Hirabayashi Y, Okumura A, Kondo T, et al. Efficacy of a diazepam suppository at preventing febrile seizure recurrence during a single febrile illness. Brain Dev. 2009;31:414–8. doi:10.1016/j.braindev.2008.07.010.

    Article  PubMed  Google Scholar 

  186. Schuchmann S, Hauck S, Henning S, et al. Respiratory alkalosis in children with febrile seizures. Epilepsia. 2011;52:1949–55. doi:10.1111/j.1528-1167.2011.03259.x.

    Article  PubMed  Google Scholar 

  187. Schuchmann S, Schmitz D, Rivera C, et al. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med. 2006;12:817–23. doi:10.1038/nm1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tolner EA, Hochman DW, Hassinen P, et al. Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia. 2011;52:104–14. doi:10.1111/j.1528-1167.2010.02731.x.

  189. Somjen GG, editor. Ions in the brain: normal function, seizures, and stroke. Oxford, NY: Oxford University Press; 2004. p. 432.

    Google Scholar 

  190. Helmy MM, Ruusuvuori E, Watkins PV, et al. Acid extrusion via blood-brain barrier causes brain alkalosis and seizures after neonatal asphyxia. Brain J Neurol. 2012;135:3311–9. doi:10.1093/brain/aws257.

    Article  Google Scholar 

  191. Kaplan LJ, Frangos S. Clinical review: acid-base abnormalities in the intensive care unit–part II. Crit Care Lond Engl. 2005;9:198–203. doi:10.1186/cc2912.

    Article  Google Scholar 

  192. Jung B, Rimmele T, Le Goff C, et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care Lond Engl. 2011;15:R238. doi:10.1186/cc10487.

    Article  Google Scholar 

  193. Cooper ES, Lechner E, Bellet S. Relation between serum and cerebrospinal fluid electrolytes under normal and abnormal conditions. Am J Med. 1955;18(4):613–21.

    Google Scholar 

  194. Hunter G, Smith HV. Calcium and magnesium in human cerebrospinal fluid. Nature. 1960;186:161–2.

    Google Scholar 

  195. Sambrook MA. The relationship between cerebrospinal fluid and plasma electrolytes in patients with meningitis. J Neurol Sci. 1974;23(2):265–73.

    Google Scholar 

  196. Woodbury J, Lyons K, Carretta R, Hahn A, Sullivan JF. Cerebrospinal fluid and serum levels of magnesium, zinc, and calcium in man. Neurology. 1968;18(7):700–5.

    Google Scholar 

  197. Bradbury MW, Sarna GS. Homeostasis of the ionic composition of the cerebrospinal fluid. Exp Eye Res. 1977;25(Suppl):249–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Gaspard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sculier, C., Gaspard, N. (2017). Electrolyte Disturbances and Critical Care Seizures. In: Varelas, P., Claassen, J. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49557-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49557-6_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-49555-2

  • Online ISBN: 978-3-319-49557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics