Skip to main content

Control of Brain Volume during Hypoosmolality and Hyperosmolality

  • Conference paper
N-Acetylaspartate

Part of the book series: Advances in Experimental Medicine and Biology ((volume 576))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Verbalis JG, The syndrome of inappropriate antidiuretic hormone secretion and other hypoosmolar disorders. In: Schrier RW (ed). Diseases of the Kidney and Urinary (Tract. Lippincott Williams & Wilkins, Philadelphia) 2511–2548, (2001).

    Google Scholar 

  2. Gullans SR, Verbalis JG, Control of brain volume during hyperosmolar and hypoosmolar conditions. Annual Review of Medicine 44, 289–301, (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Verbalis JG, Adaptation to acute and chronic hyponatremia: implications for symptomatology, diagnosis, and therapy. Semin. Nephrol. 18, 3–19, (1998).

    PubMed  CAS  Google Scholar 

  4. Arieff AI, Central nervous system manifestations of disordered sodium metabolism. Clinics Endocrin. Metab. 13, 269–294, (1984).

    Article  CAS  Google Scholar 

  5. Fraser CL, Arieff AI, Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am. J. Med. 102, 67–77, (1997).

    Article  PubMed  CAS  Google Scholar 

  6. Sterns RH, Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann. Int. Med. 107:656–664, (1987).

    PubMed  CAS  Google Scholar 

  7. Yannet H Changes in the brain resulting from depletion of extracellular electrolytes. Am. J. Physiol. 128, 683–689, (1940).

    CAS  Google Scholar 

  8. Holliday MA, Kalayci MN, Harrah J, Factors that limit brain volume changes in response to acute and sustained hyper-and hyponatremia. J.Clin. Invest. 47, 1916–1928, (1968).

    PubMed  CAS  Google Scholar 

  9. Arieff AI, Llach F, Massry SG Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine 55, 121–129, (1976)

    Article  PubMed  CAS  Google Scholar 

  10. Melton JE, Patlak CS, Pettigrew KD, Cserr HF, Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia. Am. J. Physiol. 252, F661–F669, (1987).

    PubMed  CAS  Google Scholar 

  11. Verbalis JG, Drutarosky MD, Adaptation to chronic hypoosmolality in rats. Kidney Int. 34, 351–360, (1988).

    PubMed  CAS  Google Scholar 

  12. Thurston JH, Hauhart RE, Nelson JS, Adaptive decreases in amino acids (taurine in particular), creatine, and electrolytes prevent cerebral edema in chronically hyponatremic mice: rapid correction (experimental model of central pontine myelinolysis) causes dehydration and shrinkage of brain. Metab. Brain Dis. 2, 223–241 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. Lien YH, Shapiro JI, Chan L, Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 88, 303–309, (1991).

    PubMed  CAS  Google Scholar 

  14. Verbalis JG, Gullans SR Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 567, 274–282, (1991).

    Article  PubMed  CAS  Google Scholar 

  15. Videen JS, Michaelis T, Pinto P, Ross BD, Human cerebral osmolytes during chronic hyponatremia. J. Clin. Invest. 95, 788–793, (1995).

    PubMed  CAS  Google Scholar 

  16. Verbalis JG, Adler S, Hoffman GE, Martinez AJ, Brain adaptation to hyponatremia: physiological mechanisms and clinical implications. In: Saito T, Kurokawa K, Yoshida S (eds). Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research. (Elsevier Science, Amsterdam) 615–626, (1995).

    Google Scholar 

  17. Pasantes-Morales H, Franco R, Ochoa L, Ordaz BOsmosensitive release of neurotransmitter amino acids: relevance and mechanisms. Neurochem. Res. 27, 59–65, (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Pasantes-Morales H, Franco R, Ordaz B, Ochoa LD, Mechanisms counteracting swelling in brain cells during hyponatremia. Arch. Med. Res. 33, 237–244, (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Grantham JJ, Pathophysiology of hyposmolar conditions: a cellular perspective. In: Andreoli TE, Grantham JJ, Rector FC, (eds). Disturbances in Body Fluid Osmolality. (American Physiological Society, Bethesda), 217–225, (1977).

    Google Scholar 

  20. Pasantes-Morales H, Maar TE, Moran J, Cell volume regulation in cultured cerebellar granule neurons. J. Neurosci. Res. 34:219–224, (1993).

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez-Olea R, Pena C, Moran J, Pasantes-Morales H, Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl-transport in cultured astrocytes. Neurosci. Lett. 156, 141–144, (1993).

    Article  PubMed  CAS  Google Scholar 

  22. Basavappa S, Huang CC, Mangel AW, Lebedev DV, Knauf PA, Ellory JC, Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100. J. Neurophysiol. 76, 764–769, (1996).

    PubMed  CAS  Google Scholar 

  23. Strange K, Morrison R, Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am. J.Physiol. 263, C412–C419, (1992).

    PubMed  CAS  Google Scholar 

  24. Pasantes-Morales H, Morales MS, Influence of calcium on regulatory volume decrease: role of potassium channels. Nephron 86, 414–427, (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G 1997 Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119

    Article  PubMed  CAS  Google Scholar 

  26. Okada Y 1997 Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755–C789

    PubMed  CAS  Google Scholar 

  27. Hermoso M, Satterwhite CM, Andrade YN, Hidalgo J, Wilson SM, Horowitz B, Hume JR 2002 ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl-channels and volume regulation in HeLa cells and Xenopus laevis oocytes. J Biol Chem 277:40066–40074

    Article  PubMed  CAS  Google Scholar 

  28. Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF 2003 Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta 1618:153–162

    Article  PubMed  CAS  Google Scholar 

  29. Kirk K 1997 Swelling-activated organic osmolyte channels. J Membr Biol 158:1–16

    Article  PubMed  CAS  Google Scholar 

  30. Pasantes-Morales H 1996 Volume regulation in brain cells: cellular and molecular mechanisms. Metab Brain Dis 11:187–204

    Article  PubMed  CAS  Google Scholar 

  31. Hoffmann EK 2000 Intracellular signalling involved in volume regulatory decrease. Cell Physiol Biochem 10:273–288

    Article  PubMed  CAS  Google Scholar 

  32. Pasantes-Morales H, Cardin V, Tuz K 2000 Signaling events during swelling and regulatory volume decrease. Neurochem Res 25:1301–1314

    Article  PubMed  CAS  Google Scholar 

  33. Verbalis JG 1998 Adaptation to acute and chronic hyponatremia: implications for symptomatology, diagnosis, and therapy. Semin Nephrol 18:3–19

    PubMed  CAS  Google Scholar 

  34. Berl T 1990 Treating hyponatremia: damned if we do and damned if we don’t. Kidney International 37:1006–1018

    PubMed  CAS  Google Scholar 

  35. Adler S, Verbalis JG, Williams D 1994 Brain buffering is restored in hyponatremic rats by correcting their plasma sodium concentration. Journal of the American Society of Nephrology 5:85–92

    PubMed  CAS  Google Scholar 

  36. Sterns RH, Thomas DJ, Herndon RM 1989 Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney International 35:69–75

    PubMed  CAS  Google Scholar 

  37. Sterns RH, Riggs JE, Schochet SS, Jr. 1986 Osmotic demyelination syndrome following correction of hyponatremia. New England Journal of Medicine 314:1535–1542

    Article  PubMed  CAS  Google Scholar 

  38. Kleinschmidt-DeMasters BK, Norenberg MD 1981 Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211:1068–1070

    Article  PubMed  CAS  Google Scholar 

  39. Laureno R 1980 Experimental pontine and extrapontine myelinolysis. Transactions of the American Neurological Association 105:354–358

    PubMed  CAS  Google Scholar 

  40. Verbalis JG, Gullans SR 1993 Rapid correction of hyponatremia produces differential effects on brain osmolyte and electrolyte reaccumulation in rats. Brain Research 606:19–27

    Article  PubMed  CAS  Google Scholar 

  41. Lien YH, Shapiro JI, Chan L 1990 Effects of hypernatremia on organic brain osmoles. J Clin Invest 85:1427–1435

    Article  PubMed  CAS  Google Scholar 

  42. Heilig CW, Stromski ME, Blumenfeld JD 1989 Characterization of the major brain osmolytes that accumulate in salt-loaded rats. American Journal of Physiology 257:F1108–F1116

    PubMed  CAS  Google Scholar 

  43. Cserr HF, DePasquale M, Nicholson C, Patlak CS, Pettigrew KD, Rice ME 1991 Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia. J Physiol 442:277–295

    PubMed  CAS  Google Scholar 

  44. Soupart A, Penninckx R, Namias B, Stenuit A, Perier O, Decaux G 1996 Brain myelinolysis following hypernatremia in rats. J Neuropathol Exp Neurol 55:106–113

    PubMed  CAS  Google Scholar 

  45. Adler S, Martinez J, Williams DS, Verbalis JG 2000 Positive association between blood brain barrier disruption and osmotically-induced demyelination. Mult Scler 6:24–31

    Article  PubMed  CAS  Google Scholar 

  46. Baker EA, Tian Y, Adler S, Verbalis JG 2000 Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol 165:221–230

    Article  PubMed  CAS  Google Scholar 

  47. Palevsky PM 1998 Hypernatremia. Semin Nephrol 18:20–30

    PubMed  CAS  Google Scholar 

  48. Chan PH, Fishman RA 1979 Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality. Brain Research 161:293–301

    Article  PubMed  CAS  Google Scholar 

  49. Cserr HF, DePasquale M, Patlak CS 1987 Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality. American Journal of Physiology 253:F530–F537

    PubMed  CAS  Google Scholar 

  50. Cserr HF 1988 Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Annals of the New York Academy of Sciences 529:9–20

    PubMed  CAS  Google Scholar 

  51. Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P 1991 The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Sciences 49:677–688

    Article  PubMed  CAS  Google Scholar 

  52. Arieff AI, Guisado R 1976 Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney International 10:104–116

    PubMed  CAS  Google Scholar 

  53. Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR 1991 Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. American Journal of Physiology 260:C784–C790

    PubMed  CAS  Google Scholar 

  54. Garcia-Perez A, Burg MB 1991 Renal medullary organic osmolytes. Phys Rev 71:1081–1115

    CAS  Google Scholar 

  55. Kahn A, Blum D, Casimir G, Brachet E 1981 Controlled fall in natremia in hypertonic dehydration: possible avoidance of rehydration seizures. Eur J Pediatr 135:293–296

    Article  PubMed  CAS  Google Scholar 

  56. Hogan GR, Dodge PR, Gill SR, Pickering LK, Master S 1984 The incidence of seizures after rehydration of hypernatremic rabbits with intravenous or ad libitum oral fluids. Pediatr Res 18:340–345

    PubMed  CAS  Google Scholar 

  57. Blum D, Brasseur D, Kahn A, Brachet E 1986 Safe oral rehydration of hypertonic dehydration. J Pediatr Gastroenterol Nutr 5:232–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Verbalis, J.G. (2006). Control of Brain Volume during Hypoosmolality and Hyperosmolality. In: Moffett, J.R., Tieman, S.B., Weinberger, D.R., Coyle, J.T., Namboodiri, A.M.A. (eds) N-Acetylaspartate. Advances in Experimental Medicine and Biology, vol 576. Springer, Boston, MA . https://doi.org/10.1007/0-387-30172-0_8

Download citation

Publish with us

Policies and ethics