Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nonthermal plasma processes have been successfully utilized commercially in air pollution control, ozone generation, polymerization processes, and microelectronics processing. The addition of a liquid phase that contacts the plasma has given rise to a wide range of other potential applications in materials synthesis, biomedicine, and chemical synthesis. Applications in the petroleum and energy fields utilizing organic chemistry plasma processes have been investigated as well, for example, in hydrogen generation, gas reforming, and partial oxidation. Partial oxidation of hydrocarbons is a longstanding challenge in organic chemistry, and recent work with plasma and plasma contacting liquids have demonstrated the formation of alcohols and other oxygenated species from a range of hydrocarbons. This review focuses on the functionalization of hydrocarbons with radical species produced by nonthermal plasma discharges primarily in oxygen and argon gases with liquid water. Since the types of chemical reactions that can be induced by plasma depend strongly on the composition of the gases utilized, the reactor configuration, and the plasma properties, we address two major ways of functionalizing hydrocarbons with plasma; 1) utilization of oxygen radicals from molecular oxygen and 2) utilization of hydroxyl radicals from liquid water. Both methods supply oxidants that lead to similar reaction product distributions and such plasma processes have the potential to produce value-added products efficiently and with reduced environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A. Labinger, J.E. Bercaw: Understanding and exploiting C-H bond activation, Nature 417(6888), 507–514 (2002)

    Article  CAS  Google Scholar 

  2. C.G. Jia, T. Kitamura, Y. Fujiwara: Catalytic functionalization of arenes and alkanes via C-H bond activation, Acc. Chem. Res. 34(8), 633–639 (2001)

    Article  CAS  Google Scholar 

  3. G. Suss-Fink, L. Gonzalez, G.B. Shul’pin: Alkane oxidation with hydrogen peroxide catalyzed homogeneously by vanadium-containing polyphosphomolybdates, Appl. Catal. A-Gen. 217(1/2), 111–117 (2001)

    Article  CAS  Google Scholar 

  4. Y.N. Kozlov, L. Gonzalez-Cuervo, G. Suss-Fink, G.B. Shul’pin: The kinetics and mechanism of cyclohexane oxygenation by hydrogen peroxide catalyzed by a binuclear iron complex, Russ. J. Phys. Chem. 77(4), 575–579 (2003)

    Google Scholar 

  5. G.B. Shul’pin, C.C. Golfeto, G. Suss-Fink, L.S. Shul’pina, D. Mandelli: Alkane oxygenation with H2O2 catalysed by FeCl 3 and 2,2-bipyridine, Tetrahedron Lett. 46(27), 4563–4567 (2005)

    Article  CAS  Google Scholar 

  6. M. Jannini, L.S. Shul’pina, U. Schuchardt, G.B. Shul’pin: Hydrogen peroxide oxidation of alkanes catalyzed by the vanadate ion-pyrazine-2-carboxylic acid system, Pet. Chem. 45(6), 413–418 (2005)

    Google Scholar 

  7. D. Mandelli, A.C.N. do Amaral, Y.N. Kozlov, L.S. Shul’pina, A.J. Bonon, W.A. Carvalho, G.B. Shul’pin: Hydrogen peroxide oxygenation of saturated and unsaturated hydrocarbons catalyzed by montmorillonite or aluminum oxide, Catal. Lett. 132(1/2), 235–243 (2009)

    Article  CAS  Google Scholar 

  8. E.W. Wilson, W.A. Hamilton, H.R. Kennington, B. Evans, N.W. Scott, W.B. DeMore: Measurement and estimation of rate constants for the reactions of hydroxyl radical with several alkanes and cycloalkanes, J. Phys. Chem. A 110(10), 3593–3604 (2006)

    Article  CAS  Google Scholar 

  9. A. Monod, J.F. Doussin: Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: Alkanes, alcohols, organic acids and bases, Atmospheric Environ. 42(33), 7611–7622 (2008)

    Article  CAS  Google Scholar 

  10. R. Sivaramakrishnan, J.V. Michael: Rate constants for OH with selected large alkanes: Shock-tube measurements and an improved group scheme, J. Phys. Chem. A 113(17), 5047–5060 (2009)

    Article  CAS  Google Scholar 

  11. M.M. Sprengnether, K.L. Demerjian, T.J. Dransfield, J.S. Clarke, J.G. Anderson, N.M. Donahue: Rate constants of nine C6-C9 alkanes with OH from 230 to 379 K: Chemical tracers for OH, J. Phys. Chem. A 113(17), 5030–5038 (2009)

    Article  CAS  Google Scholar 

  12. J.N. Baptist, R.K. Gholson, M.J. Coon: Hydrocarbon oxidation by a bacterial enzyme system. 1. Products of octane oxidation, Biochim. Biophys. Acta 69(1), 40 (1963)

    Article  CAS  Google Scholar 

  13. P. Battioni, J.P. Renaud, J.F. Bartoli, M. Reinaartiles, M. Fort, D. Mansuy: Monooxygenase-like oxidation of hydrocarbons by H2O2 catalyzed by manganese porphysins and imidazole – Selection of the best catalystic system and nature of the active oxygen species, J. Am. Chem. Soc. 110(25), 8462–8470 (1988)

    Article  CAS  Google Scholar 

  14. M.G. Clerici: Oxidation of saturated-hydrocarbons with hydrogen-peroxide catalyzed by titanium silicalite, Appl. Catal. 68(1/2), 249–261 (1991)

    Article  CAS  Google Scholar 

  15. R.A. Periana, G. Bhalla, W.J. Tenn, K.J.H. Young, X.Y. Liu, O. Mironov, C.J. Jones, V.R. Ziatdinov: Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction, J. Mol. Catal. a 220(1), 7–25 (2004)

    Article  CAS  Google Scholar 

  16. H. Suhr: Organic syntheses in plasma of glow discharges and their preparative application, Angew. Chem. Int. Ed. Engl. 11(9), 781 (1972)

    Article  CAS  Google Scholar 

  17. H. Suhr: Applications of nonequilibrium plasmas to organic chemistry. In: Techniques and Applications of Plasma Chemistry, ed. by J. Hollahan, A. Bell (Wiley, New York 1974) pp. 57–111

    Google Scholar 

  18. H. Suhr: Organic syntheses under plasma conditions, Pure Appl. Chem. 39(3), 395–414 (1974)

    Article  CAS  Google Scholar 

  19. M.R. Wertheimer: Plasma processing and polymers: A personal perspective, Plasma Chem. Plasma Process. 34(3), 363–376 (2014)

    Article  CAS  Google Scholar 

  20. E. Briner, E. Durand: Action of the electric spark on a low temperature nitrogen-oxygen mixture, C. r. hebd. séances Acad. Sci. 145, 248–250 (1907)

    CAS  Google Scholar 

  21. E. Briner, E. Mettler: Formation of ammonia gas from its elements under the influence of electric sparks: Influence of power, C. r. hebd. séances Acad. Sci. 144, 694–697 (1907)

    CAS  Google Scholar 

  22. E. Briner, A. Baerfuss: Contribution to the study of the formation of ammonia by means of electric discharge, Helv. Chim. Acta 2, 95–100 (1919)

    Article  CAS  Google Scholar 

  23. E. Briner, J. Desbaillets, J.P. Jacob: Research on the chemical effect of electrical discharges. XVII. Production of acetylene in mixtures of methane and hydrogen by electric arcs at varying frequencies, Helv. Chim. Acta 21, 1570–1578 (1938)

    Article  CAS  Google Scholar 

  24. E. Briner, A. Rivier: A: Studies on the chemical action of electrical discharge I. Influence of the nature of electrodes on the production of nitrogen oxide in the electric arc, Helv. Chim. Acta 12, 881–893 (1929)

    Article  CAS  Google Scholar 

  25. E. Briner, J. Corbaz, C. Wakker: Research on the chemical activity of electric discharges V. The influence of the type of electrode on the production of nitrogen oxide in the electrical arc, Helv. Chim. Acta 14, 1307–1314 (1931)

    Article  CAS  Google Scholar 

  26. E. Briner, B. Siegrist, H. Paillard: Research on the chemical effect of electric discharges XI The production of nitrogen oxide by an electric arc at high flowing frequency in nitrogen-oxygen mixtures in depression, Helv. Chim. Acta 19, 1074–1079 (1936)

    Article  CAS  Google Scholar 

  27. E. Briner, C.H. Wakker, H. Paillard, G. Carrisson: Research on the chemical activity of electric discharge IX Influence exerted on production in nitrogen oxide in industrial ovens by the addition of metal alkali earth-alkali electrodes, Helv. Chim. Acta 19, 308–320 (1936)

    Article  CAS  Google Scholar 

  28. B. Siegrist, C.H. Wakker, E. Briner: Research on the chemical activity of electric discharge VIII Production of nitrogen oxide by electric arc at different frequencies, Helv. Chim. Acta 19, 287–308 (1936)

    Article  CAS  Google Scholar 

  29. C.H. Wakker, E. Briner: Research on the chemical activity of electric discharges X Effect exercised on production yield of nitrogen oxide by increasing the frequency associated with the addition of lithium to electrodes and enriching the air in oxygen mix, Helv. Chim. Acta 19, 320–322 (1936)

    Article  CAS  Google Scholar 

  30. E. Briner, B. Siegrist, B. Susz: Researches on the chemical action of the electrical discharges. XIII. Note on the spectroscopic examination of the nitrogen-oxygen mixture (air) subjected to the action of the electric arc at different frequencies, Helv. Chim. Acta 21, 134–137 (1938)

    Article  CAS  Google Scholar 

  31. E. Briner, J. Desbaillets, F. Richard, H. Paillard: Research on the chemical action of electric discharges XVIII Production of nitrogen oxide thanks to the high frequency arc – Corrections and new results, Helv. Chim. Acta 22, 1096–1107 (1939)

    Article  CAS  Google Scholar 

  32. E. Briner, G. Papazian: Researches on the chemical action of electric discharges XXIV Entry on the formation of nitrogen oxides by effluvation of the industrial oxygen, Helv. Chim. Acta 24, 919–921 (1941)

    Article  CAS  Google Scholar 

  33. W.J. Cotton: Electric activation of chemical reactions production of nitrogen oxides. 2. Chemical reaction frequencies, Trans. Electrochemi. Soc. 91, 419–436 (1947)

    Article  Google Scholar 

  34. E. Briner, A. Baerfuss: On nitrogen fixation in the form of hydrocyanic acid by means of electric arc, Helv. Chim. Acta 2, 663–666 (1919)

    Article  CAS  Google Scholar 

  35. E. Briner, J. Desbaillets, H. Paillard: Researches on the chemical action of the electrical discharge. XII. Production of the cyanhydric acid by the electric arc at different frequencies, Helv. Chim. Acta 21, 115–133 (1938)

    Article  CAS  Google Scholar 

  36. E. Briner, J. Desbaillets, B. Susz: Researches on the chemical action for electrical discharges. XIV. Note on the examination of the mixtures of methane-nitrogen-hydrogensubjected to the electric arc at different frequencies, Helv. Chim. Acta 21, 137–140 (1938)

    Article  CAS  Google Scholar 

  37. E. Briner, J. Desbaillets, M. Wertheim: Research on the chemical effects of electrical discharge. XVI The production of cyanhydric acid by the electric arc, at different frequencies, spurting in vapour hydrocarbon-azote-hydrogen mixes, Helv. Chim. Acta 21, 859–862 (1938)

    Article  CAS  Google Scholar 

  38. E. Briner, H. Hoefer: Research on the chemical effect of electric discharges. XX. Conditions of the obtaining of raised energetic output in the synthesis of cyanhydric acid by means of an electric arc, Helv. Chim. Acta 23, 1054–1062 (1940)

    Article  CAS  Google Scholar 

  39. E. Briner, H. Hoefer: Research on the chemical effect of electrical discharges. XIX. The production of cyanhydric acid and ammoniac by the electrical arc in high and low frequencies sending out in nitrogen-oxide mixtures of carbon hydrogen at ordinary pressure and at low pressure, Helv. Chim. Acta 23, 826–831 (1940)

    Article  CAS  Google Scholar 

  40. E. Briner, H. Hoefer: Research on the chemical effect of electrical discharges. XVIII. The production of formic aldehyde by means of the electric arc in high and low frequency, Helv. Chim. Acta 23, 800–806 (1940)

    Article  CAS  Google Scholar 

  41. E. Briner, H. Hoefer: Researches on the chemical action of electric discharges. XXV. On the production of cyanhydric acid and of ammoniac by means of high frequency arch gushing out in a gas of distillation of hard coal, Helv. Chim. Acta 24, 1006–1010 (1941)

    Article  CAS  Google Scholar 

  42. E. Briner, H. Hoefer: Researches on the chemical action of the electric discharges. XXI. Variation, with the molecular size of treated hydrocarbon, of the yield of production of cyanhydric acid by means of the high frequency arch, Helv. Chim. Acta 24, 188–190 (1941)

    Article  CAS  Google Scholar 

  43. E. Briner, H. Hoefer: Research on the chemical reactions of electrical discharges. XXVII. Notice on the production of hydrazine by means of the arc, in high and low frequency, sprouting out in the mixture of hydrogen nitride or ammonia, Helv. Chim. Acta 25, 96–97 (1942)

    Article  CAS  Google Scholar 

  44. E. Briner, H. Hoefer: Studies on the chemical effect of electric releases. XXVIII. The effect of the electric arc in high and low frequency on the azote-vapour and water vapour systems of water, Helv. Chim. Acta 25, 530–538 (1942)

    Article  CAS  Google Scholar 

  45. B.P. Susz, H. Hoefer, E. Briner: Studies on the chemical effect of electric discharge. XXIX. A note on some characteristics of electric arc spectrum spurting in high and low frequency in a gas mix enclosed in water vapour, azote and oxygen, Helv. Chim. Acta 25, 889–892 (1942)

    Article  CAS  Google Scholar 

  46. S.L. Miller: Production of some organic compounds under possible primitive earth conditions, J. Am. Chem. Soc. 77, 2351–2361 (1955)

    Article  CAS  Google Scholar 

  47. S.L. Miller: The mechanism of synthesis of amino acids by electric discharges, Biochim. Biophys. Acta 23(3), 480–489 (1957)

    Article  CAS  Google Scholar 

  48. J. Oro: Synthesis of organic compounds by electric discharges, Nature 197(487), 862 (1963)

    Article  CAS  Google Scholar 

  49. A. Fridman: Plasma Chemistry (Cambridge Univ. Press, Cambridge 2008)

    Book  Google Scholar 

  50. H. Kabashima, H. Einaga, S. Futamura: Hydrogen generation from water, methane and methanol with nonthermal plasma, IEEE Trans. Industry Applications 39(2), 340–345 (2003)

    Article  CAS  Google Scholar 

  51. X.Z. Liu, C.J. Liu, B. Eliasson: Hydrogen production from methanol using corona discharges, Chin. Chem. Lett. 14(6), 631–633 (2003)

    CAS  Google Scholar 

  52. B. Sarmiento, J.J. Brey, I.G. Viera, A.R. Gonzalez-Elipe, J. Cotrino, V.J. Rico: Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge, J. Power Sources 169(1), 140–143 (2007)

    Article  CAS  Google Scholar 

  53. R. Burlica, K.Y. Shih, B.R. Locke: Formation of H 2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor, Ind. Eng. Chem. Res. 49(14), 6342–6349 (2010)

    Article  CAS  Google Scholar 

  54. R. Burlica, K.Y. Shih, B. Hnatiuc, B.R. Locke: Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions, Ind. Eng. Chem. Res. 50(15), 9466–9470 (2011)

    Article  CAS  Google Scholar 

  55. M.A. Malik, D. Hughes, A. Malik, S. Xiao, K.H. Schoenbach: Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline and methane, Plasma Chem. Plasma Process. 33(1), 271–279 (2013)

    Article  CAS  Google Scholar 

  56. C. Du, J. Mo, H. Li: Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: Challenges and opportunities, Chem. Rev. 115, 1503–1542 (2015)

    Article  CAS  Google Scholar 

  57. M.A. Lieberman, A.J. Lichtenberg: Principles of Plasma Discharges and Materials Processing (Wiley, New York 1994) p. 572

    Google Scholar 

  58. M. Lieberman, A. Lichtenberg: Principles of Plasma Discharge and Materials Processing, 2nd edn. (Wiley, Hoboken 2005)

    Book  Google Scholar 

  59. J.L. Brisset, D. Moussa, A. Doubla, E. Hnatiuc, B. Hnatiuc, G.K. Youbi, J.M. Herry, M. Naitali, M.N. Bellon-Fontaine: Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: Examples of gliding discharge treated solutions, Ind. Eng. Chem. Res. 47(16), 5761–5781 (2008)

    Article  CAS  Google Scholar 

  60. H. Conrads, M. Schmidt: Plasma generation and plasma sources, Plasma Sources Sci. Technol. 9(4), 441–454 (2000)

    Article  CAS  Google Scholar 

  61. B.R. Locke, P. Lukes, J.L. Brisset: Elementary chemical and physical phenomena in electrical discharge plasma in gas-liquid environments and in liquids. In: Plasma Chemistry and Catalysis in Gases and Liquids, ed. by V.I. Parvulescu, M.M.P. Lukes (Wiley, Weinheim 2012)

    Google Scholar 

  62. J. Tynan, V.J. Law, P. Ward, A.M. Hynes, J. Cullen, G. Byrne, S. Daniels, D.P. Dowling: Comparison of pilot and industrial scale atmospheric pressure glow discharge systems including a novel electro-acoustic technique for process monitoring, Plasma Sources Sci. Technol. 19(1), 15015 (2009)

    Article  CAS  Google Scholar 

  63. J. Friedrich: Mechanisms of plasma polymerization – Reviewed from a chemical point of view, Plasma Process. Polym. 8(9), 783–802 (2011)

    Article  CAS  Google Scholar 

  64. S.A. Nair, A.J.M. Pemen, K. Yan, F.M. van Gompel, H.E.M. van Leuken, E.J.M. van Heesch, K.J. Ptasinski, A.A.H. Drinkenburg: Tar removal from biomass-derived fuel gas by pulsed corona discharges, Fuel Process. Technol. 84(1–3), 161–173 (2003)

    Article  CAS  Google Scholar 

  65. G.J.J. Winands, K.P. Yan, A.J.M. Pemen, S.A. Nair, Z. Liu, E.J.M. van Heesch: An industrial streamer corona plasma system for gas cleaning, IEEE Trans. Plasma Sci. 34(5), 2426–2433 (2006)

    Article  CAS  Google Scholar 

  66. M. Okubo, T. Kuroki, S. Kawasaki, K. Yoshida, T. Yamamoto: Continuous regeneration of ceramic particulate filter in stationary diesel engine by nonthermal-plasma-induced ozone injection, IEEE Tran. Ind. Appl. 45(5), 1568–1574 (2009)

    Article  CAS  Google Scholar 

  67. K. Yoshida, T. Yamamoto, T. Kuroki, M. Okubo: Pilot-scale experiment for simultaneous dioxin and NO (x) Removal from garbage incinerator emissions using the pulse corona induced plasma chemical process, Plasma Chem. Plasma Process. 29(5), 373–386 (2009)

    Article  CAS  Google Scholar 

  68. H. Fujishima, T. Kuroki, T. Ito, K. Otsuka, T. Yamamoto, K. Yoshida, M. Okubo: Performance characteristics of pilot-scale indirect plasma and chemical system used for the removal of NOx from boiler emission, IEEE Trans. Ind. Appl. 46(5), 1707–1714 (2010)

    Article  CAS  Google Scholar 

  69. H. Fujishima, A. Tatsumi, T. Kuroki, A. Tanaka, K. Otsuka, T. Yamamoto, M. Okubo: Improvement in NOx removal performance of the pilot-scale boiler emission control system using an indirect plasma-chemical process, IEEE Trans. Ind. Appl. 46(5), 1722–1729 (2010)

    Article  CAS  Google Scholar 

  70. D. Gerrity, B.D. Stanford, R.A. Trenholm, S.A. Snyder: An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation, Water Res. 44(2), 493–504 (2010)

    Article  CAS  Google Scholar 

  71. I.R.A.L. Enterprises: Zebra Mussel Control Alternative Plasma Sparker Technology for the Pilot Plant Project, Report to the City of St. Alban and the Wergemnes-Panton Water District (1996)

    Google Scholar 

  72. B. Eliasson, U. Kogelschatz: Basic Data for Modelling of Electrical Discharges in Gases: Oxygen, Ph.D. Thesis (ABB Asea Brown Boveri, Baden 1986), Research Report KLR 86-11C, No. 11

    Google Scholar 

  73. B. Eliasson, U. Kogelschatz: Electron impact dissociation in oxygen, J. Phys. B. 19, 1241–1247 (1986)

    Article  CAS  Google Scholar 

  74. B. Eliasson, M. Hirth, U. Kogelschatz: Ozone synthesis from oxygen in dielectric barrier discharges, J. Phy. D Appl. Phys. 20, 1421–1437 (1987)

    Article  CAS  Google Scholar 

  75. Y. Kogelschatz, B. Eliasson: Ozone generation and applications. In: Handbook of Electrostatic Processes, ed. by J.S. Chang, A.J. Kelly, J.M. Crowley (Marcel Dekker, New York 1995) pp. 581–605

    Google Scholar 

  76. B. Locke, M. Sato, P. Sunka, M. Hoffmann, J. Chang: Electrohydraulic discharge and nonthermal plasma for water treatment, Ind. Eng. Chem. Res. 45(3), 882–905 (2006)

    Article  CAS  Google Scholar 

  77. T. Sugai, T. Abe, Y. Minamitani: Improvement of efficiency for decomposition of organic compounds in water using pulsed streamer discharge in air with water droplets by increasing of residence time. In: IEEE Pulsed Power Conference (IEEE, Washington DC 2009) pp. 1053–1057

    Google Scholar 

  78. T. Kobayashi, T. Sugai, T. Handa, Y. Minamitani, T. Nose: The effect of spraying of water droplets and location of water droplets on the water treatment by pulsed discharge in air, IEEE Trans. Plasma Sci. 38(10), 2675–2680 (2010)

    Article  Google Scholar 

  79. T. Suzuki, Y. Minamitani, T. Nose: Investigation of a pulse circuit design and pulse condition for the high energy efficiency on water treatment using pulsed power discharge in a water droplet spray, IEEE Trans. Dielectr. Electr. Insulation 18(4), 1281–1286 (2011)

    Article  CAS  Google Scholar 

  80. M.A. Malik, A. Ghaffar, S.A. Malik: Water purification by electrical discharges, Plasma Sources Sci. Technol. 10(1), 82–91 (2001)

    Article  CAS  Google Scholar 

  81. M.A. Malik: Water purification by plasmas: Which reactors are most energy efficient?, Plasma Chem. Plasma Process. 30(1), 21–31 (2010)

    Article  CAS  Google Scholar 

  82. R. Aris: Introduction to the Analysis of Chemical Reactors (Prentice-Hall, New Jersey 1965)

    Google Scholar 

  83. J.D. Thornton: Chemical engineering aspects of chemical synthesis in electrical discharges, Adv. Chem. Ser. 80, 372–389 (1969)

    Article  Google Scholar 

  84. B.R. Locke, S.M. Thagard: Analysis of chemical reactions in gliding-arc reactors with water spray into flowing oxygen, IEEE Trans. Plasma Sci. 37(4), 494–501 (2009)

    Article  CAS  Google Scholar 

  85. A.A. Fridman: Plasma Chemistry (Cambridge Univ. Press, Cambridge 2008) p. 978

    Book  Google Scholar 

  86. J.D. Thornton: Applications of electrical energy to chemical and physical rate processes, Rev. Pure Appl. Chem. 18, 197 (1968)

    Google Scholar 

  87. B.R. Locke, K.Y. Shih: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water, Plasma Sources Sci. Technol. 20(3), 15 (2011)

    Article  Google Scholar 

  88. J.L. Degarmo, V.N. Parulekar, V. Pinjala: Consider reactive distillation, Chem. Eng. Prog. 88(3), 43–50 (1992)

    CAS  Google Scholar 

  89. S. Balakrishna, L.T. Biegler: A unified approach for the simultaneous synthesis of reaction, energy and separation systems, Ind. Eng. Chem. Res. 32(7), 1372–1382 (1993)

    Article  CAS  Google Scholar 

  90. A. Nisoli, M.F. Malone, M.F. Doherty: Attainable regions for reaction with separation, Aiche J. 43(2), 374–387 (1997)

    Article  CAS  Google Scholar 

  91. R.A. Schmitz, N.R. Amundson: An analysis of chemical reactor stability and control. 5B. 2-phase gas liquid and concentrated liquid-liquid reacting systems in phyical equilibrium 2, Chem. Eng. Sci. 18(7), 391–414 (1963)

    Article  CAS  Google Scholar 

  92. J.D. Thornton, W.D. Charlton, P.L. Spedding: Hydrazine synthesis in a silent electrical discharge, Adv. Chem. Ser. 80, 165–175 (1969)

    Article  Google Scholar 

  93. R. Sergio, J.D. Thornton: Synthesis of formaldehyde and methanol from methane and water in an electrical discharge 2-phase reactor, J. Appl. Chem. 17(11), 325–328 (1967)

    Article  CAS  Google Scholar 

  94. P. Lukes, B.R. Locke, J.L. Brisset: Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. In: Plasma Chemistry and Catalysis in Gases and Liquids, ed. by V.I. Parvulescu, M.M.P. Lukes (Wiley, Weinheim 2012)

    Google Scholar 

  95. P. Bruggeman, C. Leys: Non-thermal plasmas in and in contact with liquids, J. Phys. D Appl. Phys. 42(053001), 1–28 (2009)

    Google Scholar 

  96. J. Prausnitz, R. Lichtenthaler, E. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn. (Prentice Hall, Englewood Cliffs 1986)

    Google Scholar 

  97. M. Mora, M.C. Garcia, C. Jimenez-Sanchidrian, F.J. Romero-Salguero: Selectivity control in a microwave surface-wave plasma reactor for hydrocarbon conversion, Plasma Process. Polym. 8(8), 709–717 (2011)

    Article  CAS  Google Scholar 

  98. G. Gambus, P. Patino, B. Mendez, A. Sifontes, J. Navea, P. Martin, P. Taylor: Oxidation of long chain hydrocarbons by means of low-pressure plasmas, Energy Fuels 15(4), 881–886 (2001)

    Article  CAS  Google Scholar 

  99. A.A. Joshi, B.R. Locke, P. Arce, W.C. Finney: Formation of hydroxyl radicals, hydrogen-peroxide and aqueous electrons by pulsed steamer corona discharge in aqueous solution, J. Hazard. Mater. 41(1), 3–30 (1995)

    Article  CAS  Google Scholar 

  100. D.R. Grymonpre, A.K. Sharma, W.C. Finney, B.R. Locke: The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors, Chem. Eng. J. 82(1–3), 189–207 (2001)

    Article  CAS  Google Scholar 

  101. P. Lukes, A.T. Appleton, B.R. Locke: Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors, IEEE Trans. Ind. Appl. 40(1), 60–67 (2004)

    Article  CAS  Google Scholar 

  102. M. Sahni, B. Locke: Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors, Ind. Eng. Chem. Res. 45(17), 5819–5825 (2006)

    Article  CAS  Google Scholar 

  103. M. Sahni, B.R. Locke: The effects of reaction conditions on liquid-phase hydroxyl radical production in gas-liquid pulsed-electrical-discharge reactors, Plasma Process. Polym. 3(9), 668–681 (2006)

    Article  CAS  Google Scholar 

  104. S. Mededovic, B.R. Locke: Primary chemical reactions in pulsed electrical discharge channels in water, J. Phys. D 40(24), 7734–7746 (2007)

    Article  CAS  Google Scholar 

  105. M. Sahni, B. Locke: Quantification of reductive species produced by high voltage electrical discharges in water, Plasma Process. Polym. 3(4/5), 342–354 (2006)

    Article  CAS  Google Scholar 

  106. M. Kirkpatrick, B. Locke: Hydrogen, oxygen and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge, Ind. Eng. Chem. Res. 44(12), 4243–4248 (2005)

    Article  CAS  Google Scholar 

  107. Y. Itikawa, N. Mason: Cross sections for electron collisions with water molecules, J. Phys. Chem. Reference Data 34(1), 1–22 (2005)

    Article  CAS  Google Scholar 

  108. D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong: Global model of low-temperature atmospheric-pressure He + H2O plasmas, Plasma Sources Sci. Technol. 19(2), 25018 (2010)

    Article  CAS  Google Scholar 

  109. R.J. Wandell, S. Bresch, K. Hsieh, I.V. Alabugin, B.R. Locke: Formation of alcohols and carbonyl compounds from hexane and cyclohexane with water in a liquid film plasma reactor, IEEE Trans. Plasma Sci. 42(5), 1195–1205 (2014)

    Article  CAS  Google Scholar 

  110. H. Taghvaei, A. Jahanmiri, M.R. Rahimpour, M.M. Shirazi, N. Hooshmand: Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type, Chem. Eng. J. 226, 384–392 (2013)

    Article  CAS  Google Scholar 

  111. S.M. Thagard, K. Takashima, A. Mizuno: Electrical discharges in polar organic liquids, Plasma Process. Polym. 6(11), 741–750 (2009)

    Article  CAS  Google Scholar 

  112. M.A. Malik, M. Ahmed: Preliminary studies on formation of carbonaceous products by pulsed spark discharges in liquid hydrocarbons, J. Electrostat. 66(11/12), 574–577 (2008)

    Article  CAS  Google Scholar 

  113. G. Prieto, M. Okumoto, K. Shimano, K. Takashima, S. Katsura, A. Mizuno: Reforming of heavy oil using nonthermal plasma, IEEE Trans. Ind. Appl. 37(5), 1464–1467 (2001)

    Article  CAS  Google Scholar 

  114. G. Prieto, M. Okumoto, K. Takashima, S. Katsura, A. Mizuno, O. Prieto, C.R. Gay: Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil, Braz. J. Chem. Eng. 20(1), 57–61 (2003)

    Article  CAS  Google Scholar 

  115. M.R. Khani, S.H.R. Barzoki, M.S. Yaghmaee, S.I. Hosseini, M. Shariat, B. Shokri, A.R. Fakhari, S. Nojavan, H. Tabani, M. Ghaedian: Investigation of cracking by cylindrical dielectric barrier discharge reactor on the n-hexadecane as a model compound, IEEE Trans. Plasma Sci. 39(9), 1807–1813 (2011)

    Article  CAS  Google Scholar 

  116. H.D.A. Honorato, R.C. Silva, C.K. Piumbini, C.G. Zucolotto, A.A. de Souza, A.G. Cunha, F.G. Emmerich, V. Lacerda, E.V.R. de Castro, T.J. Bonagamba, J.C.C. Freitas: (1)H low- and high-field NMR study of the effects of plasma treatment on the oil and water fractions in crude heavy oil, Fuel 92(1), 62–68 (2012)

    Article  CAS  Google Scholar 

  117. J.L. Hueso, V.J. Rico, J. Cotrino, J.M. Jimenez-Mateos, A.R. Gonzalez-Elipe: Water plasmas for the revalorisation of heavy oils and cokes from petroleum refining, Environ. Sci. Technol. 43(7), 2557–2562 (2009)

    Article  CAS  Google Scholar 

  118. C. De Bie, T. Martens, J. van Dijk, S. Paulussen, B. Verheyde, S. Corthals, A. Bogaerts: Dielectric barrier discharges used for the conversion of greenhouse gases: Modeling the plasma chemistry by fluid simulations, Plasma Sources Sci. Technol. 20(2), 24008 (2011)

    Article  CAS  Google Scholar 

  119. C. De Bie, B. Verheyde, T. Martens, J. van Dijk, S. Paulussen, A. Bogaerts: Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge, Plasma Process. Polym. 8(11), 1033–1058 (2011)

    Article  CAS  Google Scholar 

  120. A. Indarto: A review of direct methane conversion to methanol by dielectric barrier discharge, IEEE Trans. Dielectr. Electr. Insulation 15(4), 1038–1043 (2008)

    Article  CAS  Google Scholar 

  121. T. Nozaki, A. Hattori, K. Okazaki: Partial oxidation of methane using a microscale non-equilibrium plasma reactor, Catal. Today 98(4), 607–616 (2004)

    Article  CAS  Google Scholar 

  122. T. Nozaki, S. Kado, A. Hattori, K. Okazaki, N. Muto: Micro-plasma technology – Direct methaneto-m ethanol in extremely confined environment. In: Natural Gas Conversion Vii, Vol. 147, ed. by X. Bao, Y. Xu (Elsevier B.V., Amsterdam 2004) pp. 505–510

    Google Scholar 

  123. A. Agiral, T. Nozaki, M. Nakase, S. Yuzawa, K. Okazaki, J.G.E. Gardeniers: Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor, Chem. Eng. J. 167(2/3), 560–566 (2011)

    Article  CAS  Google Scholar 

  124. T. Nozaki, A. Agiral, S. Yuzawa, J. Gardeniers, K. Okazaki: A single step methane conversion into synthetic fuels using microplasma reactor, Chem. Eng. J. 166(1), 288–293 (2011)

    Article  CAS  Google Scholar 

  125. T. Nozaki, V. Goujard, S. Yuzawa, S. Moriyama, A. Agiral, K. Okazaki: Selective conversion of methane to synthetic fuels using dielectric barrier discharge contacting liquid film, J. Phys. D 44(27), 274010 (2011)

    Article  CAS  Google Scholar 

  126. T. Nozaki, K. Okazaki: Innovative methane conversion technology using atmospheric pressure non-thermal plasma, J. Jpn. Petroleum Inst. 54(3), 146–158 (2011)

    Article  CAS  Google Scholar 

  127. V. Goujard, T. Nozaki, S. Yuzawa, A. Agiral, K. Okazaki: Plasma-assisted partial oxidation of methane at low temperatures: Numerical analysis of gas-phase chemical mechanism, J. Phys. D-Appl. Phys. 44(27), 274011 (2011)

    Article  CAS  Google Scholar 

  128. J.D. Thornton, R. Sergio: Synthesis of formaldehyde from methane in electrical discharges, Nature 213(5076), 590–591 (1967)

    Article  CAS  Google Scholar 

  129. K. Okazaki, T. Kishida, K. Ogawa, T. Nozaki: Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration, Energy Convers. Manag. 43(9–12), 1459–1468 (2002)

    Article  CAS  Google Scholar 

  130. K. Hijikata, K. Ogawa, N. Miyakawa: Methanol conversion from methane and water vapor by electric discharge (effect of electric discharge process on methane conversion), Heat Trans. Asian Res. 28, 404–417 (1999)

    Article  Google Scholar 

  131. B.R. Locke, K.Y. Shih: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water, Plasma Sources Sci. Technol. 20, 34006 (2011)

    Article  Google Scholar 

  132. R. Burlica, K. Shih, B. Locke: Formation of H 2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor, Ind. Eng. Chem. Res. 49(14), 6342–6349 (2010)

    Article  CAS  Google Scholar 

  133. R. Burlica, K.Y. Shih, B.R. Locke: Formation of H 2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor, Ind. Eng. Chem. Res. 52(37), 13516–13516 (2013)

    Article  CAS  Google Scholar 

  134. G. Bredig, A. Koenig: Electrical synthesis of hydrazine, Naturwissenschaften 16, 493–493 (1928)

    Article  CAS  Google Scholar 

  135. J.C. Devins, M. Burton: Formation of hydrzazine in electric dischage decompositon of ammonia, J. Am. Chem. Soc. 76(10), 2618–2626 (1954)

    Article  CAS  Google Scholar 

  136. J.D. Thornton, W.D. Charlton, P.L. Spedding: Hydrazine synthesis in a silent electrical discharge, Adv. Chem. Ser. 80, 165 (1969)

    Article  Google Scholar 

  137. A. Hickling, G.R. Newns: The synthesis of hydrazine by glow discharge electrolysis of liquid ammonia, Proc. Chem. Soc. 11, 368–369 (1959)

    Google Scholar 

  138. B.A. Brown, C.R. Howarth, J.D. Thornton: The synthesis of hydrazine from ammoni using pulsed electrical discharge technique. In: Engineering, Chemistry and Use of Plasma Reactors, Vol. 67, ed. by J. Flinn (American Institute of Chemical Engineers, New York 1971) pp. 28–36

    Google Scholar 

  139. C.L. Rasmussen, P. Glarborg: Direct partial oxidation of natural gas to liquid chemicals: Chemical kinetic modeling and global optimization, Ind. Eng. Chem. Res. 47(17), 6579–6588 (2008)

    Article  CAS  Google Scholar 

  140. H.D. Gesser, N.R. Hunter, C.B. Prakash: The direct conversion of methane to methanol by controlled oxidation, Chem. Rev. 85(4), 235–244 (1985)

    Article  CAS  Google Scholar 

  141. W. Hoeben, W. Boekhoven, F. Beckers, E.J.M. van Heesch, A.J.M. Pemen: Partial oxidation of methane by pulsed corona discharges, J. Phys. D 47(35), 10 (2014)

    Article  CAS  Google Scholar 

  142. P. Patino, M. Mendez, J. Pastran, G. Gambus, J. Navea, O. Escobar, A. Castro: Oxidation of cycloalkanes and diesel fuels by means of oxygen low pressure plasmas, Energy Fuels 16(6), 1470–1475 (2002)

    Article  CAS  Google Scholar 

  143. P. Patino, A. Mejia, P. Rodriguez, B. Mendez: Upgrading of diesel fuels and mixtures of hydrocarbons by means of oxygen low pressure plasmas: A comparative study, Fuel 82(13), 1613–1619 (2003)

    Article  CAS  Google Scholar 

  144. M. Tezuka, T. Yajima: Oxidation of aromatic hydrocarbons with oxygen in a radiofrequency plasma, Plasma Chem. Plasma Process. 16(3), 329–340 (1996)

    Article  Google Scholar 

  145. S.V. Kudryashov, G.S. Shchegoleva, E.E. Sirotkina, A.Y. Ryabov: Oxidation of hydrocarbons in a barrier discharge reactor, High Energy Chem. 34(2), 112–115 (2000)

    Article  CAS  Google Scholar 

  146. S.V. Kudryashov, A.Y. Ryabov, E.E. Sirotkina, G.S. Shchegoleva: Transformations of n-hexane and cyclohexane by barrier discharge processing in inert gases, High Energy Chem. 35(2), 120–122 (2001)

    Article  CAS  Google Scholar 

  147. S.V. Kudryashov, G.S. Shchegoleva, A.Y. Ryabov, E.E. Sirotkina: Simulation of the kinetics of cyclohexane oxidation in a barrier discharge reactor, High Energy Chem. 36(5), 349–353 (2002)

    Article  CAS  Google Scholar 

  148. S.V. Kudryashov, A.Y. Ryabov, E.E. Sirotkina, G.S. Shchegoleva: Oxidation of cyclohexene in the presence of alkanes in a barrier discharge plasma, High Energy Chem. 37(3), 184–186 (2003)

    Article  CAS  Google Scholar 

  149. S.V. Kudryashov, A.Y. Ryabov, E.E. Sirotkina, G.S. Shchegoleva: Oxidation of propylene and isobutylene in a reactor with barrier discharge, Russ. J. Appl. Chem. 77(11), 1904–1906 (2004)

    Article  CAS  Google Scholar 

  150. S.V. Kudryashov, A.Y. Ryabov, G.S. Shchegoleva, E.E. Sirotkina, L.M. Velichkina: Oxidation of hydrocarbons in a bubble plasma reactor, Pet. Chem. 44(6), 438–440 (2004)

    Google Scholar 

  151. S.V. Kudryashov, A.Y. Ryabov, G.S. Shchegoleva, V.Y. Savinykh, A.I. Suslov: Oxidative conversion of cyclohexane in discharge plasma maintained with different high-voltage power sources, High Energy Chem. 42(1), 51–55 (2008)

    Article  CAS  Google Scholar 

  152. S.A. Perevezentsev, S.V. Kudryashov, S.E. Boganov, A.Y. Ryabov, G.S. Shchegoleva: Transformations of benzene-argon mixture in barrier discharge, High Energy Chem. 45(1), 62–65 (2011)

    Article  CAS  Google Scholar 

  153. S.V. Kudryashov, A.N. Ochered’ko, G.S. Shchegoleva, A.Y. Ryabov: Oxidation of propylene with air in barrier discharge in the presence of octane, Russ. J. Appl. Chem. 84(8), 1404–1407 (2011)

    Article  CAS  Google Scholar 

  154. S.V. Kudryashov, S.A. Perevezentsev, A.Y. Ryabov, G.S. Shchegoleva, E.E. Sirotkin: Study of the products of benzene transformation in the presence of argon, hydrogen and propane-butane mixture in barrier discharge, Pet. Chem. 52(1), 60–64 (2012)

    Article  CAS  Google Scholar 

  155. D.W. Lee, J.H. Lee, B.H. Chun, K.Y. Lee: The characteristics of direct hydroxylation of benzene to phenol with molecular oxygen enhanced by pulse DC corona at atmospheric pressure, Plasma Chem. Plasma Process. 23(3), 519–539 (2003)

    Article  CAS  Google Scholar 

  156. H. Sekiguchi, M. Ando: Direct hydroxylation of benzene using micro plasma reactor, Kagaku Kogaku Ronbunshu 30(2), 183–185 (2004)

    Article  Google Scholar 

  157. M. Tezuka, T. Yajima: Oxidation of cycloalkanes in a radiofrequency plasma, Bull. Chem. Soc. Japan 64(3), 1063–1065 (1991)

    Article  CAS  Google Scholar 

  158. P. Patino, F.E. Hernandez, S. Rondon: Reactions of O(P-3) with secondary C-H bonds of saturated hydrocarbons in nonequilibrim plasmas, Plasma Chem. Plasma Process. 15(2), 159–171 (1995)

    Article  CAS  Google Scholar 

  159. P. Patino, N. Sanchez, H. Suhr, N. Hernandez: Reactions of nonequilibrium oxygen plasmas with liquid olefins, Plasma Chem. Plasma Process. 19(2), 241–254 (1999)

    Article  CAS  Google Scholar 

  160. P. Patino, M. Ropero, D. Iacocca: Reactions of O(P-3) with aromatic compounds in the liquid phase, Plasma Chem. Plasma Process. 16(4), 563–575 (1996)

    Article  CAS  Google Scholar 

  161. R.P. Joshi, S.M. Thagard: Streamer-like electrical discharges in water: Part II. Environmental applications, Plasma Chem. Plasma Process. 33(1), 17–49 (2013)

    Article  CAS  Google Scholar 

  162. P. Bruggeman, B.R. Locke: Assessment of potential applications of plasma with liquid water. In: Low Temperature Plasma Technology: Methods and Applications, ed. by P.X.L. Chu (CRC, Boca Raton 2013)

    Google Scholar 

  163. P. Lukes, J.L. Brisset, B.R. Locke: Biological effects of electrical discharge plasma in water and in gas-liquid environments. In: Plasma Chemistry and Catalysis in Gases and Liquids, ed. by V.I. Parvulescu, M.M.P. Lukes (Wiley, Weinheim 2012)

    Google Scholar 

  164. T.D. Thornton, P.E. Savage: Phenol oxidation in supercritical water, J. Supercrit. Fluids 3, 240–248 (1990)

    Article  CAS  Google Scholar 

  165. T.D. Thornton, D. LaDue, P.E. Savage: Phenol oxidation in supercritical water: Formation of dibenzofuran, dibenzo-p-dioxid and related compounds, Environ. Sci. Technol. 25, 1507–1510 (1991)

    Article  CAS  Google Scholar 

  166. T.D. Thornton, P.E. Savage: Kinetics of phenol oxidation in supercritical water, AIChE J. 38, 321–327 (1992)

    Article  CAS  Google Scholar 

  167. W. Saus, D. Knittel, E. Schollmeyer: Dyeing of textiles in supercritical carbon-dioxide, Textile Res. J. 63(3), 135–142 (1993)

    Article  CAS  Google Scholar 

  168. H.R. Holgate, J.W. Tester: Oxidation of hydrogen and carbon monoxide in subcritical and spercritical water reaction kinetics. Pathways and water density effects. 2. Elementary reaction modeling, J. Phys. Chem. 98(3), 810–822 (1994)

    Article  CAS  Google Scholar 

  169. E.E. Brock, P.E. Savage: Detailed chemical kinetics model for supercritical water oxidation of C 1 compounds and H 2, AIChE J. 41(8), 1874–1888 (1995)

    Article  CAS  Google Scholar 

  170. Z.Y. Ding, S. Aki, M.A. Abraham: Catalytic supercritical water oxidation – Phenol conversion and product selectivity, Environ. Sci. Technol. 29(11), 2748–2753 (1995)

    Article  CAS  Google Scholar 

  171. E.F. Gloyna, L.X. Li: Supercritical water oxidation research and development update, Environ. Prog. 14, 182–192 (1995)

    Article  CAS  Google Scholar 

  172. Y. Matsumura, T. Nunoura, T. Urase, K. Yamamoto: Supercritical water oxidation of high concentrations of phenol, J. Hazard. Mater. B73, 245–254 (2000)

    Article  Google Scholar 

  173. P.E. Savage, C.H. Oh: Supercritical water oxidation. In: Hazardous and Radioactive Waste Treatment Technologies Handbook, ed. by H.O. Chang (CRC, Boca Raton 2001), Section 4.5

    Google Scholar 

  174. B. Yan, C.H. Wei: Hydrogen production from organic compounds by supercritical water gasification, Prog. Chem. 20(10), 1553–1561 (2008)

    CAS  Google Scholar 

  175. G. Gambus, P. Patino, J. Navea: Spectroscopic study of low-pressure water plasmas and their reactions with liquid hydrocarbons, Energy Fuels 16(1), 172–176 (2002)

    Article  CAS  Google Scholar 

  176. R.J. Wandell, B.R. Locke: Hydrogen peroxide generation in low power pulsed water spray plasma reactors, Ind. Eng. Chem. Res. 53(2), 609–618 (2014)

    Article  CAS  Google Scholar 

  177. S. Bresch, R.J. Wandell, H. Wang, I. Alabugin, B.R. Locke: Oxidized derivatives of n-hexane from a water/argon continuous flow electrical discharge plasma reactor, Plasma Process. 35(6), 553–584 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation grant CBET 1236225 and Florida State University. We would also like to thank Prof. Igor Alabugin and Mr. Stefan Bresch for collaboration on studies dealing with electrical discharges and hexane and Prof. Sam Hsu for discussion and encouragement to prepare this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wandell, R.J., Locke, B.R. (2017). Hydrocarbon Processing by Plasma. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_41

Download citation

Publish with us

Policies and ethics