Skip to main content

Microbial Bioremediation of Hazardous Heavy Metals

  • Chapter
  • First Online:
Bioremediation and Sustainable Technologies for Cleaner Environment

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

With the passage of time, and with the rise in demands of population Industrialization and new technologies has also augmented. But this rise is now affecting the various ecosystems and thus contaminating the environment. Accumulation of heavy metals has now become a serious concern. Nature has provided us enormous ways for the depletion of these heavy metals viz: leaching, plant uptake, erosion and deflation. But as contaminants are now reached beyond the limit of nature and thus requires alternative ways with lesser or no side effects. The best way out to treat these contaminants is bioremediation. Bioremediation is a process that utilizes plants and microbes for the transformation of heavy metals. There are many microbes that have developed specialized mechanism for heavy metals. Some microbes are found to develop a mechanism through which they are able to sequester and immobilize metals, while some are found to enhance the solubility of metals, some of them oxidizes or reduces them to non toxic or comparatively lesser toxic forms. Now the genetic engineering is also used so that the traits of one organism can be transfer to other and thus one microbe can simultaneously detoxify more than one contaminant. In this chapter, efforts have been made to simplify the causes, effects, possible treatment, mechanism and the future aspect of bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124: 12108–12109

    Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotech 136:389–406

    Article  CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phy Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Batool R, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–554

    Article  CAS  Google Scholar 

  • Blanco A (2000) Immobilization of nonviable cyanobacteria and their use for heavy metal adsorption from water. In: Oluguin EJ, Sanchez G, Hernandez E (eds) Environmental biotechnology and cleaner bioprocesses. Taylor & Francis, Philadelphia, pp 135–151

    Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilities Cr(IV) reduction. Microbiology 152:2469–2477

    Article  CAS  Google Scholar 

  • Brim H, Venkateshwaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high temperature radioactive waste environments. App Environ Microbiol 69:4575–4582

    Article  CAS  Google Scholar 

  • Chen C, Wang JL (2007) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482

    CAS  Google Scholar 

  • Clausen CA (2000) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manage Res 18:264–268

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metals detoxification and homeostatis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Env Q 34:1707–1745

    Article  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals-an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Divya B, Deepak Kumar M (2011) Plant-Microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79

    CAS  Google Scholar 

  • Dixit R,Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 7: 2189–2212

    Google Scholar 

  • Donald LS (2003) Environmental soil chemistry. California, USA

    Google Scholar 

  • Fang L, Wei X, Cai P, Huang Q, Chen H, Liang W, Rong X (2011) Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour Technol 102:1137–1141

    Article  CAS  Google Scholar 

  • Fang LC, Huang QY, Wei X, Liang W, Rong XM, Chen WL, Cai P (2010) Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresour Technol 101:5774–5779

    Article  CAS  Google Scholar 

  • Friis M, Keith M (1998) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 35:320–325

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Gómez Jiménez-T R, Moliternib E, Rodríguezb L, Fernándezc FJ, Villaseñorc J (2011) Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Procedia Env Sci 9:54–59

    Article  Google Scholar 

  • Guiné V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JM (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling and EXAFS study. Env Sci Technol 40:1806–1813

    Article  Google Scholar 

  • Hussein H, Farag S, Moawad H (2004) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7:13–22

    Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phtochelatin production and cadmium accumulation. App Environ Microbiol 73:6317–6320

    Article  CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204

    Article  CAS  Google Scholar 

  • Kostal JRY, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    Article  CAS  Google Scholar 

  • Lovley DR, Philips EJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  • Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilization of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 31: 81–87

    Google Scholar 

  • Murtaza I, Dutt A, Ali A (2002) Biomolecular engineering of Escherichia coli organomercurial lyase gene and its expression. Indian J Biotech 1:117–120

    CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lacto strains. Cryst Growth Des 2: 293–298

    Google Scholar 

  • Nies DH, Silver S (1989) Plasmid determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900

    Article  CAS  Google Scholar 

  • Ng SP, Davis B, Polombo EA, Bhave MA (2009) Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 7:2–38

    Google Scholar 

  • Penny C, Vuilleumier S, Bringel F (2010) Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol 74:257–275

    Article  CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microorganisms and metal pollution In: Maier RM, Pepper IL, Gerba CB (eds) Environmental Microbiology, London, NW1 7BY.UK, 55, pp 403–423

    Google Scholar 

  • Rojas LA, Yanez C, Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6:e17555

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: Environmental cleanup through pathway engineering. Curr Opin Biotechnol 19:437–444

    Article  CAS  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    Article  CAS  Google Scholar 

  • Talos K, Pager C, Tonk S, Majdik C, Kocsis B, Kilar F, Pernyeszi T (2009) Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ Sapientiae Agric Environ 1:20–30

    Google Scholar 

  • Thavasi R (2011) Microbial biosurfactants: from an environment application point of view. J Bioremed Biodegrad 2: Article 104e

    Google Scholar 

  • Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A, Varese GC (2010) Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water 2:550–565

    Article  CAS  Google Scholar 

  • Tunali S, Akar T, Oezcan AS, Kiran I, Oezcan A (2006) Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112

    Article  CAS  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, La F (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  CAS  Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. J Biometals 18:121–129

    Article  CAS  Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kanwar, P., Mishra, T., Mukherjee, G. (2017). Microbial Bioremediation of Hazardous Heavy Metals. In: Prashanthi, M., Sundaram, R., Jeyaseelan, A., Kaliannan, T. (eds) Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-48439-6_21

Download citation

Publish with us

Policies and ethics