Skip to main content

An Updated View of the Microbial Diversity in Deep Hypersaline Anoxic Basins

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

Deep hypersaline anoxic basins (DHABs) are marine extreme habitats, firstly discovered in the 1970s of the last century, located in several oceanographic regions, including the Mediterranean and Red Sea and the Gulf of Mexico. These basins are filled with brines that do not mix with the overlying seawater, due to a density difference. Brine and seawater result separated by a thick interface acting as a trap for particulate and cells. Some microbiological studies focused on seawater-brine interfaces of DHABs, showing that microbial populations are differentially distributed according to the gradient of salinity, oxygen, and nutrients occurring in such transition zones. Moreover, DHABs’ brines were intensively studied showing that specific bacterial, archaeal, and eukaryotic populations thrive there. In the last few years, cultivation and “omics”-based approaches have been used with samples collected from DHABs around the world, allowing clarifying metabolic processes of paramount ecological importance and pointing out the high biotechnological potential of the inhabiting extremophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anschutz P, Blanc G, Monnin C, Boulègue J (2000) Geochemical dynamics of the Atlantis II Deep (Red Sea): II. Composition of metalliferous sediment pore waters. Geochem Cosmochim Acta 64:3995–4006

    Article  CAS  Google Scholar 

  • Antunes A, Eder W, Fareleira P et al (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7:29–34

    PubMed  Google Scholar 

  • Antunes A, Francça L, Rainey FA et al (2008) Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57:1035–1040

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  PubMed  Google Scholar 

  • Batang ZB, Papathanassiou E, Al-Suwailem A et al (2012) First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94:247–253

    Article  Google Scholar 

  • Bernhard JM, Kormas K, Pachiadaki MG et al (2014) Benthic protists and fungi of Mediterranean deep hypersaline anoxic basin redoxcline sediments. Front Microbiol 5:605. doi:10.3389/fmicb.2014.00605

    Article  PubMed  PubMed Central  Google Scholar 

  • Borin S, Crotti E, Mapelli F et al (2008) DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. Saline Syst 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Borin S, Brusetti L, Mapelli F et al (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci U S A 106:9151–9156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borin S, Mapelli F, Rolli E et al (2013) Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles 17:289–299

    Article  CAS  PubMed  Google Scholar 

  • Bougouffa S, Yang JK, Lee OO et al (2013) Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79:3425–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Zhang WP, Wang Y, PY Q (2015) Microbial community changes along the active seepage site of one cold seep in the Red Sea. Front Microbiol 6:1–11

    Google Scholar 

  • Cita MB, Aghib FS, Cambi A et al (1985) Precipitazione attuale di gesso in un bacino anossico profondo; prime osservazioni geologiche, idrologiche, paleontologiche sul Bacino Bannock (Mediterraneo orientale). Giornal Geol 47:143–163

    Google Scholar 

  • Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Ann Rev Mar Sci 1:143–168

    Article  PubMed  Google Scholar 

  • Corinaldesi C, Tangherlini M, Luna GM, Dell’Anno A (2014) Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proc Roy Soc B Biol Sci 281:20133299

    Article  CAS  Google Scholar 

  • Daffonchio D, Borin S, Brusa T et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep sea halocline. Nature 440:203–207

    Article  CAS  PubMed  Google Scholar 

  • De Vitis V, Guidi B, Contente ML et al (2015) Marine microorganisms as source of stereoselective esterases and ketoreductases: kinetic resolution of a prostaglandin intermediate. Marine Biotechnol 17:144–152

    Article  CAS  Google Scholar 

  • Dickins HD, Van Vleet ES (1992) Archaebacterial activity in the Orca basin determined by the isolation of characteristic isopranyl ether-linked lipids. Deep-Sea Res 39:521–536

    Article  CAS  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Schmidt M, Koch M et al (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Bernhard JM (2013) Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns. Life 3:346–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Orsi W, Breiner HW et al (2011) Novel kinetoplastids associated with hypersaline anoxic lakes in the Eastern Mediterranean deep-sea. Deep-Sea Res I 58:1040–1048

    Article  CAS  Google Scholar 

  • Edgcomb VP, Taylor C, Pachiadaki MG et al (2014) Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II. http://dx.doi.org/10.1016/j.dsr2.2014.10.020i

  • Ferrer M, Golyshina OV, Chernikova TN et al (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Werner J, Chernikova TN et al (2012) Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268–281

    Article  CAS  PubMed  Google Scholar 

  • Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch Microbiol 154:120–126

    Article  CAS  Google Scholar 

  • Filker S, Stock A, Breiner HW et al (2013) Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea. Microbiology-Open 2:54–63

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Hikmawan T, Antunes A et al (2015) Diversity of methanogens and sulphate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol 166:688–699

    Article  PubMed  Google Scholar 

  • Gurvich E (2006) Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Springer, Berlin, Heidelberg, 416 p

    Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN et al (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Scholten J, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  CAS  Google Scholar 

  • Huber H, Stetter K (2001) Class I. Deferribacteres class. nov. Bergey’s manual of systematics of Archaea and Bacteria. doi:10.1002/9781118960608.cbm00022

  • Jongsma D, Fortuin AR, Huson W et al (1983) Discovery of an anoxic basin within the Strabo trench, eastern Mediterranean. Nature 305:795–797

    Article  Google Scholar 

  • Joye SB, MacDonald IR, Montoya JP, Piccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2:295–309

    Article  CAS  Google Scholar 

  • Joye SB, Samarkin VA, Orcutt BN et al (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354

    Article  CAS  Google Scholar 

  • Kormas KA, Pachiadaki MP, Karayanni H et al (2015) Inter comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep sea hypersaline basins. Extremophiles 19:949–960

    Article  PubMed  Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G et al (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13:2250–2268

    Article  PubMed  Google Scholar 

  • La Cono V, Arcadi E, La Spada G (2015) A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis. Microorganisms 3:500–517

    Article  PubMed Central  Google Scholar 

  • Larock PA, Lauer RD, Schwarz JR et al (1979) Microbial biomass and activity distribution in an anoxic, hypersaline basin. Appl Environ Microbiol 37:466–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee OO, Wang Y, Tian RM et al (2014) In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system. Sci Rep 4:3587

    PubMed  Google Scholar 

  • Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald IR, Buthman D, Sager WW, Peccini MB, Guinasso NL (2000) Pulsed oil discharged from a mud volcano. Geology 28:907–910

    Article  Google Scholar 

  • Mapelli F, Borin S, Daffonchio D (2012) Microbial diversity in deep hypersaline anoxic basins. Adapt Microb Life Environ Extrem Nov Res Results Appl:21–36. doi:10.1007/978-3-211-99691-1_2

  • MEDRIFF Consortium (1995) Three brine lakes discovered in the seafloor of the eastern Mediterranean. Eos Trans AGU 76:313–318

    Article  Google Scholar 

  • Mwirichia R, Alam I, Rashid M et al (2016) Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep 6:19181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-1 and ANME-II communities. Environ Microbiol 7:98–106

    Article  CAS  PubMed  Google Scholar 

  • Ngugi DK, Blom J, Alam I et al (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9:396–411

    Article  Google Scholar 

  • Qian PY, Wang Y, Lee OO et al (2011) Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J 5:507–518

    Article  CAS  PubMed  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Schardt C (2015) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Miner Depos 51:89–111

    Article  Google Scholar 

  • Shokes RF, Trabant PK, Presley BJ, Reid DF (1977) Anoxic, hypersaline basin in the Northern Gulf of Mexico. Science 196:1443–1446

    Article  CAS  PubMed  Google Scholar 

  • Siam R, Mustafa GA, Sharaf H et al (2012) Unique prokaryotic consortia in geochemically distinct sediments from red sea Atlantis II and discovery deep brine pools. PLoS One 7:e42872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Kublanov IV, Gavrilov SN et al (2016) Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J 10:240–252

    Article  CAS  PubMed  Google Scholar 

  • Stock A, Edgcomb V, Orsi W et al (2013) Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol 13:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeck T, Filker S, Edgcomb V et al (2014) Living at the limits: evidence for microbial eukaryotes thriving under pressure in deep anoxic, hypersaline habitats. Adv Ecol Article ID 532687, doi:10.1155/2014/532687

  • Strous M, Fuerst JA, Kramer EHM et al (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Van Cappellen P, Viollier E, Roychoudhury A et al (1998) Biogeochemical cycles of manganese and iron at the oxic–anoxic transition of a stratified marine basin (Orca Basin, Gulf of Mexico). Environ Sci Technol 32:2931–2939

    Article  CAS  Google Scholar 

  • Van der Wielen PWJJ, Bolhuis H, Borin S et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  CAS  PubMed  Google Scholar 

  • Wallmann K, Suess E, Westbrook GH et al (1997) Salty brines on the Mediterranean sea floor. Nature 387:31–32

    Article  CAS  Google Scholar 

  • Wang Y, Zhang W-P, Cao H (2014) Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front Microbiol 6:1–12

    Google Scholar 

  • Yakimov MM, La Cono V, Denaro R et al (2007) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 1:1–13

    Article  Google Scholar 

  • Yakimov MM, La Cono V, Slepak VZ et al (2013) Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 3:3554

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, La Cono V, La Spada G et al (2015) Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol 17:364–382

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Ye Q, Zhou J, Zhang CL (2006) Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiol Ecol 57:251–259

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhang WP, Tian RM, Wang Y, Qian PY (2015) Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea. Antonie Van Leeuwenhoek 108:461–471

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Daffonchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mapelli, F. et al. (2017). An Updated View of the Microbial Diversity in Deep Hypersaline Anoxic Basins. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_2

Download citation

Publish with us

Policies and ethics