Skip to main content

Advertisement

Log in

Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Numerical heat and fluid flow simulations of the Atlantis II Deep in the Red Sea were conducted to investigate the development, migration, and discharge of hydrothermal fluids into a submarine depression and determine the conditions necessary to form a brine pool. High-salinity fluids are predicted to form by leaching Miocene evaporates, migrate and convect within young oceanic crust, and discharge onto the seafloor. Predicted fluid discharge temperatures (T max, 301 °C), discharge fluid velocities (V max, 0.09 m/s), and salinities (S max, 21 wt%) increase over time and reach values comparable to modern seafloor observations. Established convection patterns and discharge behavior are robust and are not greatly affected by geometry of rock property changes. Modeling results were used to calculate the minimum conditions for hydrothermal fluids from a developing hydrothermal system to mix with seawater, reverse buoyancy, and begin to form a brine pool in a submarine depression. Under conditions encountered on the seafloor (T, 25–300 °C; S, 5–25 wt%), fluid mixtures predicted to pond on the seafloor range from late in the mixing process (99 %) at low temperatures (T, 26 °C) to much earlier (36 % mixing) at higher temperatures (T, 94 °C). A model of brine pool evolution is proposed that describes the processes and conditions necessary to initiate brine pool formation and compares formation conditions with accumulated ore material in the Atlantis II Deep and other locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anschutz P, Blanc G (1995) Geochemical dynamics of the Atlantis II Deep (Red Sea): silica behavior. Mar Geol 128:25–36

    Article  Google Scholar 

  • Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet Sci Lett 142:147–159

    Article  Google Scholar 

  • Anschutz P, Turner JS, Blanc G (1998) The development of layering, fluxes through double-diffusive interfaces, and location of hydrothermal sources of brines in the Atlantis II Deep: Red Sea. J Geophys Res 103:27809–27819

    Article  Google Scholar 

  • Anschutz P, Blanc G, Chatin F, Geiller M, Pierret MC (1999) Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res I 46:1779–1792

    Article  Google Scholar 

  • Bäcker H (1973) Rezente hydrothermal-sedimentäre Lagerstättenbildung. Erzmetall 26:544–555

    Google Scholar 

  • Bäcker H, Richter H (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis-II-Tief im Roten Meer. Geol Rundsch 52:697–737

    Article  Google Scholar 

  • Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nature Phys Sci 240:153–158

    Article  Google Scholar 

  • Baker ET, Massoth GJ (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet Sci Lett 85:59–73

    Article  Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Bertram C, Krätschell A, O’Brien K,Brückmann W, Proelss, Rehdanz K (2011) Metalliferous Sediments in the Atlantis II Deep – Assessing the Geological and Economic Resource Potential and Legal Constraints. Kiel Institute for the World Economy Paper 1688: 30 p

  • Bignell RD, Cronan DS, Tooms JS (1976) Red Sea metalliferous brine precipitates. Geol Assoc Canada Spec Pap 14:150–179

    Google Scholar 

  • Bischoff JL (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry, and genesis. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 368–401

    Chapter  Google Scholar 

  • Bischoff JL, Dickson FW (1975) Seawater-basalt interaction at 200°C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 25:385–397

    Article  Google Scholar 

  • Blanc G, Anschutz P (1995) New stratification in the hydrothermal brine system of the Atlantis II Deep, Red Sea. Geologija 23:543–546

    Article  Google Scholar 

  • Blanc G, Boulègue J, Badaut D, Stouff P (1986) Premiers résultats de la campagne océanographique Hydrotherm (mai 1985) du Marion-Dufresne sur la fosse Atlantis II (Mer Rouge). Comptes Rendus Acad Sci Paris 302:175–180

    Google Scholar 

  • Blanc G, Anschutz P, Pierret MC (1998) Metalliferous sedimentation in the Atlantis II deep: a geochemical insight. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins. Red Sea—Gulf of Aden. Chapman and Hall, London, pp 505–520

    Chapter  Google Scholar 

  • Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban deeps, Red Sea. Miner Deposita 26:217–227

    Article  Google Scholar 

  • Bohannon RG (1986) Tectonic configuration of the western Arabian continental margin, southern Red Sea. Tectonics 5:477–499

    Article  Google Scholar 

  • Bonatti E, Colantoni R, Della Vedova BD, Taviani M (1984) Geology of the Red Sea transitional region (22°N–25°N). Oceanol Acta 7:385–398

    Google Scholar 

  • Boyce AJ, Coleman ML, Russell MJ (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306:545–550

    Article  Google Scholar 

  • Brewer PG, Densmore CD, Munns R, Stanley RJ (1969) Hydrography of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 368–401

    Google Scholar 

  • Bubnov VA, Fedorova VS, Shcherbinin AD (1977) Density data on brines in the Red Sea. Oceanology 17:395–400

    Google Scholar 

  • Campbell IH, McDougall TJ, Turner JS (1984) A note on fluid dynamic processes which can influence the deposition of massive sulfides. Econ Geol 79:1905–1913

    Article  Google Scholar 

  • Carwile RH, Faure G (1971) Strontium isotope ratios and base metal content in a core from the Atlantis II deep, Red Sea. Chem Geol 8:15–23

    Article  Google Scholar 

  • Cathles LM (1993) A capless 350°C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems. Econ Geol 88:1977–1988

    Article  Google Scholar 

  • Cathles LM (2011) What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits. Miner Deposita 46:639–657

    Article  Google Scholar 

  • Chou IM (1987) Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. Geochim Cosmochim Acta 51:1965–1975

    Article  Google Scholar 

  • Clark SP (1966) Thermal conductivity. Geol Soc Am Mem 97:459–482

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals, rock physics and phase relations—a handbook of physical constants. AGU Ref Shelf 3:105–126

    Article  Google Scholar 

  • Cocherie A, Calvez JY, Oudin-Dunlop E (1994) Hydrothermal activity as recorded by Red Sea sediments: Sr-Nd isotopes and REE signatures. Mar Geol 118:291–302

    Article  Google Scholar 

  • Cochran JR (2005) Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst. doi:10.1029/2004GC000826

    Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53

    Article  Google Scholar 

  • Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69:159–175

    Article  Google Scholar 

  • Cowen JP, Massoth GJ, Feely RA (1990) Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res 37:1619–1637

    Article  Google Scholar 

  • Craig H (1966) Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154:1544–1548

    Article  Google Scholar 

  • Danielsson LG, Dryssen D, Granéli A (1980) Chemical investigation, of the Atlantis II and discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065

    Article  Google Scholar 

  • Davis RE, Stakes DS, Wheat CG, Moyer CL (2009) Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the cleft segment. Juan de Fuca Ridge Geomicrobiol J. doi:10.1080/01490450902889080

    Google Scholar 

  • Dekov VM, Scholten JC, Botz B, Garbe-Schönberg CD, Stoffers P (2007) Fe-Mn-(hydro) oxide-carbonate crusts from the Kebrit Deep, Red Sea: precipitation at the seawater/brine redoxcline. Mar Geol 236. doi:10.1016/j.margeo.2006.10.020

  • Delevaux MH, Doe BR (1974) Preliminary report on uranium, thorium, and lead contents and lead isotopic composition in sediment samples from the Red Sea. Initial Rep Deep Sea Drill Proj 23:943–946

    Google Scholar 

  • Department of Energy (2003) Waste isolation pilot plant hazardous waste permit, Attachment L. WIPP groundwater detection monitoring program plan, 80 p

  • Drake CL, Girdler RW (1964) A geophysical study of the Red Sea. Geophys J Royal Astron Soc 8:473–495

    Article  Google Scholar 

  • Dupré B, Blanc G, Boulègue J, Allègre CJ (1988) Metal mobilization at a spreading centre studied using lead isotopes. Nature 333:165–167

    Article  Google Scholar 

  • Dziak RP, Bohnenstiehl DR, Cowen JP, Baker ET, Rubin KH, Haxel JH, Fowler MJ (2007) Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events. Geology 35:579–582

    Article  Google Scholar 

  • Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Fluid and geochemical transport through oceanic crust: a transsect across the eastern flank of the Juan de Fuca Ridge. Earth Planet Sci Lett. doi:10.1016/S0012-821X(99)00191-0

    Google Scholar 

  • Erickson AJ, Simmons G (1969) Thermal measurements in the Red Sea hot brine pools. In: Degens EJ, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 114–121

    Chapter  Google Scholar 

  • Fisher AT (1998) Permeability within basaltic oceanic crust. Rev Geophys 36:143–182

    Article  Google Scholar 

  • Fisher AT, Becker K, Narasimhan TN (1994) Off-axis hydrothermal circulation: parametric tests of a refined model of processes at Deep Sea Drilling Project/Ocean Drilling Program site 504. J Geophys Res 99:3097–3121

    Article  Google Scholar 

  • Fouquet Y, Knott R, Cambon P, Fallick A, Rickard D, Desbruyeres D (1996) Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet Sci Lett 144:147–162

    Article  Google Scholar 

  • Garrido CJ, Machetel PL (2000) Modeling the effect of deep off-axis hydrothermal circulation on the thermal structure and accretion of the oceanic crust at fast-spreading mid-ocean ridges. EOS Abstr 81:1345

    Google Scholar 

  • German CR, Thurnherr AH, Knoery J, Charlou JL, Jean-Baptiste P, Edmonds HN (2010) Heat, volume flow and chemical fluxes from submarine venting: a synthesis of results from the rainbow hydrothermal field, 36°N MAR. Deep Sea Res I. doi:10.1016/j.dsr.2009.12.011

    Google Scholar 

  • Girdler RW (1970) A review of Red Sea heat flow. Philos Trans Royal Soc London A 267:191–203

    Article  Google Scholar 

  • Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J Royal Astron Soc 51:245–251

    Article  Google Scholar 

  • Girdler RW, Southren TC (1987) Structure and evolution of the northern Red Sea. Nature 330:716–721

    Article  Google Scholar 

  • Girdler RW, Whitmarsh RB (1974) Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. Initial Rep Deep Sea Drill Progr 23:913–921

    Google Scholar 

  • Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23

    Article  Google Scholar 

  • Guney M, Nawab Z, Marhoun MA (1988) Atlantis II Deep’s metal reserves and their evaluation. Offshore Technol Conf Houston 3:33

    Google Scholar 

  • Hackett JP, Bischoff JL (1973) New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ Geol 68:553–564

    Article  Google Scholar 

  • Hadley DG, Schmidt DL (1980) Sedimentary rocks and basins of the Arabian shield and their evolution. Instit Appl Geol Bull 3:25–50

    Google Scholar 

  • Haenel R (1972) Heat flow measurements in the Red Sea and the Gulf of Aden. Z Geophys 38:1035–1047

    Google Scholar 

  • Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1966. Deep Sea Res 27A:161–171

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery deep. Mar Geol 144:311–330

    Article  Google Scholar 

  • Hsü KJ, Stoffers P, Ross DA (1978) Messinian evaporites from the Mediterranean and Red Seas. Mar Geol 26:71–72

    Article  Google Scholar 

  • Huenges E, Hurter S, Sadaat A, Köhler S, Trautwein U (2002) The in-situ geothermal laboratory Groß-Schönebeck - learning to use low permeability aquifers for geothermal power. 27th Workshop Geotherm Reserv Eng, SGP-TR-171

  • Hunt JM, Hays EE, Degens ET, Ross DA (1967) Red Sea: detailed survey of hot brine area. Science 156:514–516

    Article  Google Scholar 

  • Huyakorn PS, Pinder GF (1983) Computational methods in subsurface flow. Academic, Waltham

    Google Scholar 

  • Inverno CMC, Solomon M, Barton MD, Foden J (2008) The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: a mineralogical, fluid inclusion, and isotopic investigation. Econ Geol 103:241–267

    Article  Google Scholar 

  • Izzeldin AY (1987) Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 143:269–306

    Article  Google Scholar 

  • Katsube TJ, Connell S (1998) Shale permeability characteristics. Geol Surv Can Rep 1998-E:183–192

    Google Scholar 

  • Katsube TJ, Wires K, Cameron BI, Franklin JM (1991) Porosity and permeability of ocean floor sediments from the Middle Valley Zone in the northeast Pacific: Borehole PAR90-1. Geol Surv Can Pap 91-1E:91–97

    Google Scholar 

  • Kelley DF (2006) Pressures of crystallization and depths of magma chambers in Iceland rift zones. Geol Soc Am Abst 38:447

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, AT3–60 Shipboard party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    Article  Google Scholar 

  • Kelley DS, Jeffrey A, Karson JA, Früh-Green GL (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Lavelle JW (1995) The initial rise of a hydrothermal plume from a line segment source—results from a three-dimensional numerical model. Geophys Res Lett 22:159–162

    Article  Google Scholar 

  • Lavelle JW (1997) Buoyancy-driven plumes in rotating, stratified cross-flows: plume dependence on rotation, turbulent mixing, and cross-flow strength. J Geophys Res 102:3405–3420

    Article  Google Scholar 

  • Lavelle JW, Baker ET (1994) A numerical study of local convection in the benthic ocean induced by episodic hydrothermal discharge. J Geophys Res 99:16065–16080

    Article  Google Scholar 

  • Leach D (2005) Sediment-hosted lead-zinc deposits; a global perspective. Econ Geol Ann 100:561–607

    Google Scholar 

  • Little SA, Stolzenbach KD, Von Herzen RP (1987) Measurements of plume flow from a hydrothermal vent field. J Geophys Res 92:2587–2596

    Article  Google Scholar 

  • Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet Sci Lett 73:211–225

    Article  Google Scholar 

  • Lowell JD, Genik GJ (1974) Sea-floor spreading and structural evolution of southern Red Sea. Am Assoc Petrol Geol Bull 56:247–259

    Google Scholar 

  • Lowell JD, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophys Res Lett 29:26-1–26-4

    Article  Google Scholar 

  • Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266:244–246

    Article  Google Scholar 

  • Lydon JW (2004) Genetic models for Sullivan and other SEDEX deposits. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead-zinc sulphide deposits; attributes and models of some major deposits in India, Australia and Canada. Narosa, New Delhi, pp 149–190

    Google Scholar 

  • MacDonald KC, Becker K, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the ‘black smoker’ vent on the East Pacific Rise. Earth Planet Sci Lett 48:1–7

    Article  Google Scholar 

  • Makris J, Rihm R (1991) Shear-controlled evolution of the Red Sea: pull apart model. Tectonophysics 198:441–446

    Article  Google Scholar 

  • Martinez F, Cochran JR (1988) Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics 150:1–32

    Article  Google Scholar 

  • McDougall TJ (1984a) Convective processes caused by a dense, hot saline source flowing into a submarine depression from above. Deep Sea Res 31:1287–1309

    Article  Google Scholar 

  • McDougall TJ (1984b) Fluid dynamic implications for massive sulphide deposits of hot saline fluid flowing into a submarine depression from below. Deep Sea Res 31:145–170

    Article  Google Scholar 

  • McDougall TJ (1990) Bulk properties of “hot smoker” plumes. Earth Planet Sci Lett 99:185–194

    Article  Google Scholar 

  • McKibben MA, Andes JP Jr, Williams AE (1988) Active ore formation at a brine interface in metamorphosed deltaic lacustrine sediments: the Salton Sea geothermal system, California. Econ Geol 83:511–523

    Article  Google Scholar 

  • Melchert B, Devey CW, German CR, Lackschewitz KS, Seifert R, Walter M, Mertens C, Yoerger DR (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61–69

    Article  Google Scholar 

  • Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarlin PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30:341–359

    Article  Google Scholar 

  • Missack E, Stoffers P, El Goresy A (1989) Mineralogy, paragenesis, and phase relations of copper-iron sulfides in the Atlantis II deep, Red Sea. Miner Deposita 24:82–91

    Article  Google Scholar 

  • Monin AS, Plakhin EA (1982) Stratification and space-time variability of Red Sea hot brines. Deep Sea Res 29:1271–1291

    Article  Google Scholar 

  • Morin R, Silva AJ (1984) The effects of high pressure and high temperature on some physical properties of ocean sediments. J Geophys Res 89:511–526

    Article  Google Scholar 

  • Morrow CA, Byerlee JD (1992) Permeability of core samples from Cajon Pass scientific drill hole: results from 2100 to 3500 m depth. J Geophys Res 97:5145–5151

    Article  Google Scholar 

  • Munns RG, Stanley RJ, Densmore CD (1967) Hydrographic observations of the Red Sea brines. Nature 214:1215–1217

    Article  Google Scholar 

  • Mustafa Z, Narwab Z, Horn R, Lelann F (1984) Economic interest of hydrothermal deposits. Proc Second International GERMINAL Seminar, Brest, 509–539

  • Norden B, Förster A (2006) Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. Am Assoc Pet Geol Bull 90:939–962

    Google Scholar 

  • Norton D, Knapp R (1977) Transport phenomena in hydrothermal systems: the nature of porosity. Am J Sci 277:913–936

    Article  Google Scholar 

  • Oudin E, Thisse Y, Ramboz C (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediment: preliminary results. Mar Min 5:3–31

    Google Scholar 

  • Oxburgh ER, Agrell SO (1982) Thermal conductivity and temperature structure of the Reydarfjordur borehole. J Geophys Res 87:6423–6428

    Article  Google Scholar 

  • Pezard PA (1990) Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in hole 504B. J Geophys Res 95:9237–9264

    Article  Google Scholar 

  • Pierret MC, Blanc G, Bosch D (1998) Sr, Pb isotopes and REE analysis of five cores from the Red Sea: an insight into hydrothermal input. Mineral Mag 62A:1176–1177

    Article  Google Scholar 

  • Pierret MC, Clauer N, Bosch D, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochimica Acta 65:1259–1275

    Article  Google Scholar 

  • Popp T, Kern H (1998) Ultrasonic wave velocities, gas permeability and porosity in natural and granular rock salt. Phys Chem Earth 23:373–378

    Article  Google Scholar 

  • Pottdorf RJ, Barnes HL (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223

    Google Scholar 

  • Potter RW, Brown DL (1977) The volumetric properties of aqueous sodium chloride solutions from 0° to 500°C at pressures up to 2000 bars based on a regression of available data in the literature. Geol Surv Bull 1421-C: 36 pp

  • Raffensperger JP (1993) Quantitative evaluation of the hydrologic and geochemical processes involved in the formation of unconformity- type uranium deposits: Dissertation, Johns Hopkins University

  • Raffensperger JP, Garven G (1995a) The formation of unconformity-type uranium ore deposits. 1. Coupled groundwater flow and heat transport modeling. Am J Sci 295:581–630

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995b) The formation of unconformity type uranium ore deposits. 2. Coupled hydrochemical modeling. Am J Sci 295:639–696

    Article  Google Scholar 

  • Ramboz C, Danis M (1990) Superheating in the Red Sea? The heat-mass balance of the Atlantis II Deep revisited. Earth Planet Sci Lett 97:190–210

    Article  Google Scholar 

  • Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II deep, Red Sea: evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Miner 26:765–786

    Google Scholar 

  • Rihm R, Makris J, Möller L (1991) Seismic surveys in the northern Red Sea: asymmetric crustal structure. Tectonophysics 198:279–295

    Article  Google Scholar 

  • Rona P, Trivett A (1992) Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet Sci Lett 109:57–71

    Article  Google Scholar 

  • Rona PA, Thompson G, Mottl MJ, Karson JA, Jenkins WJ, Graham D, Mallette M, Von Damm K, Edmond JM (1984) Hydrothermal activity at the trans-Atlantic geotraverse hydrothermal field, mid-Atlantic ridge crest at 26°N. J Geophys Res 89:11365–11377

    Article  Google Scholar 

  • Ross DA (1972) Red Sea hot brine area: revisited. Science 175:1455–1457

    Article  Google Scholar 

  • Ross DA, Schlee J (1973) Shallow structure and geological development of the southern Red Sea. Geol Soc Am Bull 84:3827–3848

    Article  Google Scholar 

  • Ross DA, Hays EE, Allstrom FC (1969) Bathymetry and continuous seismic profiles of the hot brine region of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 82–97

    Chapter  Google Scholar 

  • Sangster DF (2002) The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Miner Deposita 37:149–157

    Article  Google Scholar 

  • Sato T (1972) Behavior of ore-forming solutions in seawater. Min Geol 22:129–222

    Google Scholar 

  • Savoyat E, Shiferaw A, Balcha T (1989) Petroleum exploration in the Ethiopian Red Sea. J Pet Geol 12:187–204

    Article  Google Scholar 

  • Schardt C, Yang J, Large RR (2005) Numerical heat and fluid-flow modeling of the Panorama volcanic-hosted massive sulfide district, Western Australia. Econ Geol 100:574–566

    Article  Google Scholar 

  • Schardt C, Large RR, Yang J (2006) Controls on heat flow, fluid migration, and massive sulfide formation of an off-axis hydrothermal system—the Lau basin perspective. Am J Sci 306:103–134

    Article  Google Scholar 

  • Schoell M, Faber E (1978) New isotopic evidence of the origin of the Red Sea brines. Nature 275:436–438

    Article  Google Scholar 

  • Schoell M, Hartmann H (1978) Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274:784–785

    Article  Google Scholar 

  • Schoell M, Stahl W (1972) The carbon isotopic composition and the concentration of the dissolved anorganic carbon in the Atlantis II deep brines/Red Sea. Earth Planet Sci Lett 15:206–211

    Article  Google Scholar 

  • Scholten JC, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC, Boca Raton, pp 369–395

    Google Scholar 

  • Scott SD (1985) Seafloor polymetallic sulfide deposits: modern and ancient. Mar Min 5:191–212

    Google Scholar 

  • Shanks WC III, Bischoff JL (1977) Ore transport and deposition in the Red Sea geothermal systems: a geochemical model. Geochim Cosmochim Acta 41:1507–1519

    Article  Google Scholar 

  • Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea geothermal deposits. Econ Geol 75:445–459

    Article  Google Scholar 

  • Snelgrove SH, Forster CB (1996) Impact of seafloor sediment permeability and thickness on off-axis hydrothermal circulation: Juan de Fuca Ridge eastern flank. J Geophys Res 101:2915–2925

    Article  Google Scholar 

  • Solomon M (2008) Brine-pool deposition for the Zn-Pb-Cu massive sulphide deposits of the Bathurst mining camp, New Brunswick, Canada. II. Ocean anoxia during mineralization. Ore Geol Rev 33:352–360

    Article  Google Scholar 

  • Solomon M, Gaspar OC (2001) Textures of the Hellyer volcanogenic massive sulphide deposit, Tasmania—the ageing of a sulphide sediment on the seafloor. Econ Geol 96:1513–1534

    Google Scholar 

  • Solomon M, Zaw K (1997) Formation of the Hellyer volcanogenic massive sulphide deposit on the seafloor. Econ Geol 92:686–695

    Article  Google Scholar 

  • Solomon M, Quesada C (2003) Zn-Pb-Cu massive sulphide deposits: brine pool types occur in collisional orogens, black smoker types in backarc/arc basins. Geologija 31:1029–1032

    Article  Google Scholar 

  • Solomon M, Tornos F, Large RR, Badham JNP, Both RA, Kin Z (2004) Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geol Rev 25:259–283

    Article  Google Scholar 

  • Stoffers P, Kühn R (1974) Red Sea evaporites: a petrographic and geochemical study. In: Whitmarsh RB, Weser OE, Ross D A et al (eds) Initial Rep Deep Sea Drill Proj 23: 821–847

  • Svalnov VN, Strizhov VP, Bogdanov YA, Isayeva AB (1984) Hydrothermal barite crust on basalt in the Atlantis II Deep (Red Sea). Oceanology 24:716–720

    Google Scholar 

  • Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166

    Article  Google Scholar 

  • Swift SA, Bower A, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep Sea Res I 64:118–128

    Article  Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulphides: the Iberian Pyrite belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Tornos F, Heinrich CA (2008) Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chem Geol 247:195–207

    Article  Google Scholar 

  • Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the Tharsis massive sulphide deposit, Iberian Pyrite belt: geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214

    Article  Google Scholar 

  • Turner JS, Campbell IH (1987) Temperature, density and buoyancy fluxes in “black smoker” plumes, and the criterion for buoyancy reversal. Earth Planet Sci Lett 86:85–92

    Article  Google Scholar 

  • Turner JS, Gustafson LB (1978) The flow of hot saline solutions from vents in the seafloor—some implications for exhalative massive sulfide and other ore deposits. Econ Geol 73:1082–1100

    Article  Google Scholar 

  • Von Damm KL (2001) Lost city found. Nature 412:127–128

    Article  Google Scholar 

  • Whitmarsh RB, Weser OE, Ross DA et al (1974) Initial Rep Deep Sea Drill Proj 23:539–751

    Google Scholar 

  • Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett 184:671–683

    Article  Google Scholar 

  • Yang J, Large RR (2001) Computational modelling of hydrothermal ore-forming fluid migration in complex earth structures. In: Xie X, Wang X, Jiang X (eds) Computer applications in the mineral industry. Swets and Zeitlinger, Lisse, pp 115–120

    Google Scholar 

  • Yang J, Latychev K, Edwards RN (1998) Numerical computation of hydrothermal fluid circulation in fractured Earth structures. Geophys J Int 135:627–649

    Article  Google Scholar 

  • Zierenberg RA (1990) Deposition of metalliferous sediments beneath a brine pool in the Atlantis II Deep, Red Sea. In: McMurray RG (ed) Gorda Ridge—a seafloor spreading center in the United States’ exclusive economic zone. Springer, New York, pp 131–142

    Google Scholar 

  • Zierenberg RA, Holland ME (2004) Sedimented ridges as a laboratory for exploring the subsurface biosphere. AGU Geophys Monogr Ser 144:305–323

    Google Scholar 

  • Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II deep, Red Sea. Econ Geol 76:57–72

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1986) Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim Cosmochim Acta 50:2205–2214

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the reviewers for their helpful suggestions, Ross Large and Bruce Gemmell for their discussions on the subject years ago, and remember Mike Solomon, who was the inspiration for my fascination with brine pools.

Compliance with Ethical Standards

Conflict of interest

The author declares that he has no conflict of interest.

No animals or human participants were involved in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schardt.

Additional information

Editorial handling: F. Tornos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schardt, C. Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Miner Deposita 51, 89–111 (2016). https://doi.org/10.1007/s00126-015-0583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0583-2

Keywords

Navigation