Skip to main content

Study on the Bubble Behavior and Anodic Overvoltage of NiFe2O4 Ceramic Based Inert Anodes

  • Chapter
Light Metals 2015

Abstract

NiFe2O4 ceramic based inert anodes were fabricated by a two-step cold-pressing sintering process. The bubble behavior of NiFe2O4 ceramic based inert anodes was investigated in a two-compartment see-through quartz cell. Anodic overvoltage and potential decay curves on the inert anodes were measured by using the steady state and current interruption technique. The results show that the electrolytic gas evolution for NiFe2O4 inert anodes, including bubble nucleation, growth, coalescence, growth again, migration and escaping, lasts for 79s and the escaping bubble size is about of Φ4mm×2mm. While gas evolution lasts for 102s of carbon anodes with larger releasing bubbles. When current densities are 0.6, 0.8, 1.0 and 1.2A/cm2, the anodic overvoltage of NiFe2O4 anodes are 0.189 V, 0.270 V, 0.309 V and 0.359 V, respectively. After adding small amount of MnO2, V2O5, and TiO2, a minor reduction in anodic overvoltage of NiFe2O4 anodes can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Q. Lai et al., “Effect of Adding Methods of Metallic Phase on Microstructure and Thermal Shock Resistance of Ni/(90NiFe2O4-10NiO) Cermets”, Transactions of Nonferrous Metals Society of China, 17(2007), 681–682.

    Article  Google Scholar 

  2. J. Keniry, “The Economics of Inert Anodes and Wettable Cathodes for Aluminum Reduction Cells”, JOM, 53(2001), 43–47.

    Article  Google Scholar 

  3. J. Ma et al., “Research on Preparation and Properties of 18NiO-NiFe2O4 Composite Ceramic Inert Anodes”, Light Metals, 2010, 949–952.

    Google Scholar 

  4. L.J. Berchmans et al., “Evaluation of Mg2+-substituted NiFe2O4 as A Green Anode Material,” Materials Letters, 58(2004), 1928–1933.

    Article  Google Scholar 

  5. J.H. Yang et al., “The Behavior and Improvement of SnO2-based Inert Anodes in Aluminum Electrolysis,” Light Metals 1993, 493–495.

    Google Scholar 

  6. S. P. Ray, R. A. Rapp, “Composition Suitab le for Use as Inert Electrode Having Good Electrical Conductivity and Mechanical Properties,” US Patent: 4454015, 1984–02–08.

    Google Scholar 

  7. S. P. Ray, “Inert anodes for Hall cells”. Light Metals 1986, 287–298.

    Google Scholar 

  8. E. Olsen, J. Thonstad, “Nickel Ferrite as Inert Anodes in Aluminium Electrolysis (part I): Material Fabrication and Preliminary Testing”, Journal of Applied Electrochemistry, 29 (1999), 293–299.

    Article  Google Scholar 

  9. D. R. Sadoway, “Inert Anodes for the Hall HároultCell: the Ultimate Materials Challenge”, JOM, 53 (2001), 34–35.

    Article  Google Scholar 

  10. T. Jun, Z.Jiancheng, “On the Electrochemical Response of Anodic Bubbles in Aluminium Electrolysis”, Computers and Applied Chemistry, 18(2001), 57–58.

    Google Scholar 

  11. L. Cassayre, T. A. Utigard, and Sylvie Bouvet, “Visualizing Gas Evolution on Graphite and Oxygen-Evolving Anodes”, Journal of Minerals, Metals and Materials Society, 54(2002), 41–45.

    Article  Google Scholar 

  12. Z.G. Ye, et al., “Structure and Characteri s tics of Ti/IrO2(x)+MnO2(1-x) Anode for Oxygen Evolution”, Solid State Sciences, 10 (2008), 346–354.

    Article  Google Scholar 

  13. J.L. Xu, et al.,“Bubble Behavior on Metal Anode of Aluminum Electrolysis,” The Chinese Journal of Nonferrous Metals, 14 (2004), 298–301.

    Google Scholar 

  14. L. Cassayre, T. A. Utigard, and S. Bouvet, “Visualizing Gas Evolution on Graphite and Oxygen-evolving Anodes”, JOM, 56 (2002), 41–45.

    Article  Google Scholar 

  15. Q.Y. Li, et al., “Determination of Ohmic/Voltage Drop and Factors Influencing of Anodic Overvoltage of Carbon Anodes in Na3AlF6-Al2O3 based Melts”, Transactions of Nonferrous Metals Society of China, 3 (2003), 699–703.

    Google Scholar 

  16. B. Wang et al, “Effect of TiO2Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4Ferrite Ceramics”, International Journal of Applied Ceramic Technology, Published online, DOI: 10.1111/ijac.12219, 2014.

    Google Scholar 

  17. J.J. Du, et al, “Effect of MnO2 Addition on Sintering Properties of 18NiO-NiFe2O4 Composite Ceramics: Preliminary Results”, Journal of Materials Engineering and Performance, 21 (2012), 1998–2001.

    Article  Google Scholar 

  18. J.J. Du, et al, “Influence of V2O5 as An Effective Dopant on the Sintering Behavior and Magnetic Properties of NiFe2O4Ferrite Ceramics”, Ceramics International, 38 (2012), 1707–1711.

    Article  Google Scholar 

  19. D. W. Li, et al, “Wetting Behavior of Al Alloys on A TiH2Substrate”, Journal of Alloys and Compounds, 489 (2010), L1–L3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Du, J., Wang, B., Liu, Y., Yao, G., Fang, Z., Hu, P. (2015). Study on the Bubble Behavior and Anodic Overvoltage of NiFe2O4 Ceramic Based Inert Anodes. In: Hyland, M. (eds) Light Metals 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48248-4_200

Download citation

Publish with us

Policies and ethics