Skip to main content

Photodynamic Diagnosis and Therapy for Oral Potentially Malignant Disorders and Cancers

  • Chapter
  • First Online:
Development of Oral Cancer

Abstract

Regardless of the major advances in all standard diagnostic and therapeutic modalities, the 5-year survival of oral cancers is still 50% and has not improved over the past years. It is imperative to expand the horizon of the clinically utilized protocols for premalignant and malignant oral lesion control so as to include approved and minimally invasive ones such as photodynamic diagnosis (PDD) and photodynamic therapy (PDT). They both depend on the light activation of an otherwise chemically inert compound known as photosensitizer (PS). The energy gained from the light can be transferred into fluorescence or into production of deleterious reactive oxygen species (ROS). The first has a great value in tumor region visualization, while the second mediates PDT-associated antitumor activity. In this chapter, the light is shed on the concept behind PDD/PDT along with discussing their elements and cell death mechanisms. Importantly, a glimpse at the current status from the clinical point of view is presented accompanied with future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Retrieved from www.clinicaltrials.gov visited on 12.1.2017.

References

  1. Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med. 2003;14(1):47–62.

    Article  PubMed  Google Scholar 

  2. Daley T, Darling M. Nonsquamous cell malignant tumours of the oral cavity: an overview. J Can Dent Assoc. 2003;69(9):577–82.

    PubMed  Google Scholar 

  3. Patel SG, Shah JP. TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin. 2005;55(4):242–58. quiz 61-2, 64

    Article  PubMed  Google Scholar 

  4. Silverman S Jr. Demographics and occurrence of oral and pharyngeal cancers. The outcomes, the trends, the challenge. J Am Dent Assoc. 2001;132(Suppl):7S–11S.

    Article  PubMed  Google Scholar 

  5. Tahmassebi JF, Drogkari E, Wood SR. A study of the control of oral plaque biofilms via antibacterial photodynamic therapy. Eur Arch Paediatr Dent. 2015;16(6):433–40.

    Article  CAS  PubMed  Google Scholar 

  6. Sobaniec S, Bernaczyk P, Pietruski J, Cholewa M, Skurska A, Dolinska E, Duraj E, Tokajuk G, Paniczko A, Olszewska E, Pietruska M. Clinical assessment of the efficacy of photodynamic therapy in the treatment of oral lichen planus. Lasers Med Sci. 2013;28(1):311–6.

    Article  PubMed  Google Scholar 

  7. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.

    Article  CAS  PubMed  Google Scholar 

  8. Daniell MD, Hill JS. A history of photodynamic therapy. Aust N Z J Surg. 1991;61(5):340–8.

    Article  CAS  PubMed  Google Scholar 

  9. McDonagh AF. Phototherapy: from ancient Egypt to the new millennium. J Perinatol. 2001;21(Suppl 1):S7–S12.

    Article  PubMed  Google Scholar 

  10. Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Res. 2003;23(5A):3591–600.

    PubMed  Google Scholar 

  11. Tappeiner H, Jodlbauer A. Über Wirkung der photodynamischen (fluoreszierenden) Stoffe auf Protozoan und Enzyme. [On the effect of photodynamic (fluorescent) substances on protozoa and enzymes]. Dtsch Arch Klin Med. 1904;80(427–487).

    Google Scholar 

  12. Jesionek A, Tappeiner H. Zur Behandlung der Hautkarzinome mit fluoreszierenden Stoffen. Dtsch Arch Klin Med. 1905;82:223–9.

    Google Scholar 

  13. Hausman W. Die sensibilisierende wirkung des hematoporphyrins. Biochem Z. 1911;30:276.

    Google Scholar 

  14. Policard A. Etudes sur les aspects offerts par des tumeurs experimentales examinees a la lumiere de Wood. Cr Soc Biol. 1924;91:1423–8.

    Google Scholar 

  15. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508–16.

    Article  CAS  PubMed  Google Scholar 

  16. Lipson RL, Baldes EJ, Gray MJ. Hematoporphyrin derivative for detection and management of cancer. Cancer. 1967;20(12):2255–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kessel D, Thompson P. Purification and analysis of hematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography. Photochem Photobiol. 1987;46(6):1023–5.

    Article  CAS  PubMed  Google Scholar 

  18. Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38(8):2628–35.

    CAS  PubMed  Google Scholar 

  19. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Med Phys. 2008;35(7):3127–36.

    Article  CAS  PubMed Central  Google Scholar 

  22. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004;1(4):279–93.

    Article  CAS  Google Scholar 

  23. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(5 Suppl):715S–24S; discussion 24S-25S

    CAS  PubMed  Google Scholar 

  24. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–76.

    Article  CAS  PubMed  Google Scholar 

  25. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allison RR, Downie GH, Cuenca R, XH H, Childs CJ, Sibata CH. Photosensitizers in clinical PDT. Photodiagn Photodyn Ther. 2004;1(1):27–42.

    Article  CAS  Google Scholar 

  27. Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther. 2010;7(2):61–75.

    Article  CAS  Google Scholar 

  28. van Dongen GA, Visser GW, Vrouenraets MB. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev. 2004;56(1):31–52.

    Article  PubMed  CAS  Google Scholar 

  29. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics. 2011;1:230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonnett R, White RD, Winfield UJ, Berenbaum MC. Hydroporphyrins of the meso-tetra(hydroxyphenyl)porphyrin series as tumour photosensitizers. Biochem J. 1989;261(1):277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Visscher SA, Dijkstra PU, Tan IB, Roodenburg JL, Witjes MJ. mTHPC mediated photodynamic therapy (PDT) of squamous cell carcinoma in the head and neck: a systematic review. Oral Oncol. 2013;49(3):192–210.

    Article  PubMed  CAS  Google Scholar 

  32. Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Senge MO, Brandt JC. Temoporfin (Foscan(R), 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)-a second-generation photosensitizer. Photochem Photobiol. 2011;87(6):1240–96.

    Article  CAS  PubMed  Google Scholar 

  34. Hopper C, Niziol C, Sidhu M. The cost-effectiveness of Foscan mediated photodynamic therapy (Foscan-PDT) compared with extensive palliative surgery and palliative chemotherapy for patients with advanced head and neck cancer in the UK. Oral Oncol. 2004;40(4):372–82.

    Article  CAS  PubMed  Google Scholar 

  35. Kiesslich T, Berlanda J, Plaetzer K, Krammer B, Berr F. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan-and Foslip-based photodynamic treatment in human biliary tract cancer cell lines. Photochem Photobiol Sci. 2007;6(6):619–27.

    Article  CAS  PubMed  Google Scholar 

  36. Dougherty TJ. Studies on the structure of porphyrins contained in Photofrin II. Photochem Photobiol. 1987;46(5):569–73.

    Article  CAS  PubMed  Google Scholar 

  37. Byrne CJ, Marshallsay LV, Ward AD. The composition of Photofrin II. J Photochem Photobiol B. 1990;6(1–2):13–27.

    Article  CAS  PubMed  Google Scholar 

  38. Moan J, Sommer S. Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Photochem Photobiol. 1984;40(5):631–4.

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci. 2015;16(10):25865–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Musiol R, Serda M, Polanski J. Prodrugs in photodynamic anticancer therapy. Curr Pharm Des. 2011;17(32):3548–59.

    Article  CAS  PubMed  Google Scholar 

  41. Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J. Aminolevulinic Acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules. 2011;16:4140–64.

    Article  CAS  Google Scholar 

  42. Pansare V, Hejazi S, Faenza W, Prud’homme RK. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem Mater. 2012;24(5):812–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shackley DC, Whitehurst C, Moore JV, George NJ, Betts CD, Clarke NW. Light penetration in bladder tissue: implications for the intravesical photodynamic therapy of bladder tumours. BJU Int. 2000;86(6):638–43.

    Article  CAS  PubMed  Google Scholar 

  44. Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17(3):173–86.

    Article  CAS  PubMed  Google Scholar 

  45. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther. 2004;1(1):43–8.

    Article  Google Scholar 

  46. Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc. 2013;46(1):7–23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. CH Y, Lin HP, Chen HM, Yang H, Wang YP, Chiang CP. Comparison of clinical outcomes of oral erythroleukoplakia treated with photodynamic therapy using either light-emitting diode or laser light. Lasers Surg Med. 2009;41(9):628–33.

    Article  Google Scholar 

  48. Tanaka H, Hashimoto K, Yamada I, Masumoto K, Ohsawa T, Murai M, Hirano T. Interstitial photodynamic therapy with rotating and reciprocating optical fibers. Cancer. 2001;91(9):1791–6.

    Article  CAS  PubMed  Google Scholar 

  49. Jerjes W, Upile T, Hamdoon Z, Abbas S, Akram S, Mosse CA, Morley S, Hopper C. Photodynamic therapy: the minimally invasive surgical intervention for advanced and/or recurrent tongue base carcinoma. Lasers Surg Med. 2011;43(4):283–92.

    Article  PubMed  Google Scholar 

  50. Jerjes W, Upile T, Radhi H, Hopper C. Photodynamic therapy and end-stage tongue base cancer: short communication. Head Neck Oncol. 2011;3:49.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jager HR, Taylor MN, Theodossy T, Hopper C. MR imaging-guided interstitial photodynamic laser therapy for advanced head and neck tumors. AJNR Am J Neuroradiol. 2005;26(5):1193–200.

    PubMed  Google Scholar 

  52. Karakullukcu B, Nyst HJ, van Veen RL, Hoebers FJ, Hamming-Vrieze O, Witjes MJ, de Visscher SA, Burlage FR, Levendag PC, Sterenborg HJ, Tan IB. mTHPC mediated interstitial photodynamic therapy of recurrent nonmetastatic base of tongue cancers: development of a new method. Head Neck. 2012;34(11):1597–606.

    Article  PubMed  Google Scholar 

  53. Osher J, Jerjes W, Upile T, Hamdoon Z, Morley S, Hopper C. Adenoid cystic carcinoma of the tongue base treated with ultrasound-guided interstitial photodynamic therapy: a case study. Photodiagn Photodyn Ther. 2011;8(1):68–71.

    Article  Google Scholar 

  54. Chen Q, Chen H, Hetzel FW. Tumor oxygenation changes post-photodynamic therapy. Photochem Photobiol. 1996;63(1):128–31.

    Article  CAS  PubMed  Google Scholar 

  55. Scheeren TW, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26(4):279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nordsmark M, Loncaster J, Aquino-Parsons C, Chou SC, Ladekarl M, Havsteen H, Lindegaard JC, Davidson SE, Varia M, West C, Hunter R, Overgaard J, Raleigh JA. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol. 2003;67(1):35–44.

    Article  PubMed  Google Scholar 

  57. Coutier S, Bezdetnaya LN, Foster TH, Parache RM, Guillemin F. Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice. Radiat Res. 2002;158(3):339–45.

    Article  CAS  PubMed  Google Scholar 

  58. Xiao Z, Halls S, Dickey D, Tulip J, Moore RB. Fractionated versus standard continuous light delivery in interstitial photodynamic therapy of dunning prostate carcinomas. Clin Cancer Res. 2007;13(24):7496–505.

    Article  CAS  PubMed  Google Scholar 

  59. Yang L, Wei Y, Xing D, Chen Q. Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg Med. 2010;42(7):671–9.

    Article  PubMed  Google Scholar 

  60. Huang Z, Chen Q, Shakil A, Chen H, Beckers J, Shapiro H, Hetzel FW. Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy. Photochem Photobiol. 2003;78(5):496–502.

    Article  CAS  PubMed  Google Scholar 

  61. Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol. 2002;76(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  62. Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 2015;34(4):643–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fan KF, Hopper C, Speight PM, Buonaccorsi GA, Bown SG. Photodynamic therapy using mTHPC for malignant disease in the oral cavity. Int J Cancer. 1997;73(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  64. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garg AD, Bose M, Ahmed MI, Bonass WA, Wood SR. In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells. PLoS One. 2012;7(4):e34475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moon YH, Park JH, Kim SA, Lee JB, Ahn SG, Yoon JH. Anticancer effect of photodynamic therapy with hexenyl ester of 5-aminolevulinic acid in oral squamous cell carcinoma. Head Neck. 2010;32(9):1136–42.

    Article  PubMed  Google Scholar 

  68. Park JH, Moon YH, Kim DJ, Kim SA, Lee JB, Ahn SG, Yoon JH. Photodynamic therapy with hexenyl ester of 5-aminolevulinic acid induces necrotic cell death in salivary gland adenocarcinoma cells. Oncol Rep. 2010;24(1):177–81.

    Article  CAS  PubMed  Google Scholar 

  69. Chen HM, Liu CM, Yang H, Chou HY, Chiang CP, Kuo MY. 5-Aminolevulinic acid induce apoptosis via NF-kappaB/JNK pathway in human oral cancer Ca9-22 cells. J Oral Pathol Med. 2011;40(6):483–9.

    Article  CAS  PubMed  Google Scholar 

  70. Qiao L, Mei Z, Yang Z, Li X, Cai H, Liu W. ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway. Photodiagn Photodyn Ther. 2016;14:66–73.

    Article  CAS  Google Scholar 

  71. Qiao L, Xu C, Li Q, Mei Z, Li X, Cai H, Liu W. Photodynamic therapy activated STAT3 associated pathways: targeting intrinsic apoptotic pathways to increase PDT efficacy in human squamous carcinoma cells. Photodiagn Photodyn Ther. 2016;14:119–27.

    Article  CAS  Google Scholar 

  72. Lim HJ, Oh CH. Indocyanine green-based photodynamic therapy with 785 nm light emitting diode for oral squamous cancer cells. Photodiagn Photodyn Ther. 2011;8(4):337–42.

    Article  CAS  Google Scholar 

  73. Choi H, Lim W, Kim JE, Kim I, Jeong J, Ko Y, Song J, You S, Kim D, Kim M, Kim BK, Kim O. Cell death and intracellular distribution of hematoporphyrin in a KB cell line. Photomed Laser Surg. 2009;27(3):453–60.

    Article  CAS  PubMed  Google Scholar 

  74. Lai X, Ning F, Xia X, Wang D, Tang L, Hu J, Wu J, Liu J, Li X. HMME combined with green light-emitting diode irradiation results in efficient apoptosis on human tongue squamous cell carcinoma. Lasers Med Sci. 2015;30(7):1941–8.

    Article  PubMed  Google Scholar 

  75. Kobayashi W, Liu Q, Nakagawa H, Sakaki H, Teh B, Matsumiya T, Yoshida H, Imaizumi T, Satoh K, Kimura H. Photodynamic therapy with mono-L-aspartyl chlorin e6 can cause necrosis of squamous cell carcinoma of tongue: experimental study on an animal model of nude mouse. Oral Oncol. 2006;42(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  76. Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, Suga Y, Honda H, Nagatsuka Y, Ohira T, Tsuboi M, Hirano T. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol. 2006;1(5):489–93.

    Article  PubMed  Google Scholar 

  77. Ahn MY, Yoon HE, Kwon SM, Lee J, Min SK, Kim YC, Ahn SG, Yoon JH. Synthesized Pheophorbide a-mediated photodynamic therapy induced apoptosis and autophagy in human oral squamous carcinoma cells. J Oral Pathol Med. 2013;42(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  78. Barcessat AR, Huang I, Rosin FP, dos Santos Pinto D Jr, Maria Zezell D, Correa L. Effect of topical 5-ALA mediated photodynamic therapy on proliferation index of keratinocytes in 4-NQO-induced potentially malignant oral lesions. J Photochem Photobiol B. 2013;126:33–41.

    Article  CAS  PubMed  Google Scholar 

  79. Rosin FC, Barcessat AR, Borges GG, Correa L. Effect of 5-ALA-mediated photodynamic therapy on mast cell and microvessels densities present in oral premalignant lesions induced in rats. J Photochem Photobiol B. 2015;153:429–34.

    Article  CAS  PubMed  Google Scholar 

  80. Longo JP, Lozzi SP, Simioni AR, Morais PC, Tedesco AC, Azevedo RB. Photodynamic therapy with aluminum-chloro-phthalocyanine induces necrosis and vascular damage in mice tongue tumors. J Photochem Photobiol B. 2009;94(2):143–6.

    Article  CAS  PubMed  Google Scholar 

  81. Kingsbury JS, Cecere W, Mang TS, Liebow C. Photodynamic therapy for premalignant lesions in DMBA-treated hamsters: a preliminary study. J Oral Maxillofac Surg. 1997;55(4):376–81; discussion 81-2

    Article  CAS  PubMed  Google Scholar 

  82. Schmidt-Erfurth U, Hasan T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol. 2000;45(3):195–214.

    Article  CAS  PubMed  Google Scholar 

  83. Lenihan CR, Taylor CT. The impact of hypoxia on cell death pathways. Biochem Soc Trans. 2013;41(2):657–63.

    Article  CAS  PubMed  Google Scholar 

  84. Chen B, Pogue BW, Luna JM, Hardman RL, Hoopes PJ, Hasan T. Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin Cancer Res. 2006;12(3 Pt 1):917–23.

    Article  CAS  PubMed  Google Scholar 

  85. Osaki T, Takagi S, Hoshino Y, Okumura M, Kadosawa T, Fujinaga T. Efficacy of antivascular photodynamic therapy using benzoporphyrin derivative monoacid ring A (BPD-MA) in 14 dogs with oral and nasal tumors. J Vet Med Sci. 2009;71(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  86. Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, Li H, Jia L, Cao W. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 2013;335(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  87. Triesscheijn M, Ruevekamp M, Aalders M, Baas P, Stewart FA. Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochem Photobiol. 2005;81(5):1161–7.

    Article  CAS  PubMed  Google Scholar 

  88. Milstein DM, van Kuijen AM, Copper MP, Karakullukcu B, Tan IB, Lindeboom JA, Fokkens WJ, Ince C. Monitoring microcirculatory alterations in oral squamous cell carcinoma following photodynamic therapy. Photodiagn Photodyn Ther. 2012;9(1):69–75.

    Article  Google Scholar 

  89. Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis. 2010;15(9):1050–71.

    Article  CAS  PubMed  Google Scholar 

  90. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reginato E, Wolf P, Hamblin MR. Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects. World J Immunol. 2014;4(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wachowska M, Muchowicz A, Demkow U. Immunological aspects of antitumor photodynamic therapy outcome. Cent Eur J Immunol. 2015;40(4):481–5.

    Article  PubMed  Google Scholar 

  93. Dube A, Sharma S, Gupta PK. Tumor regression induced by photodynamic treatment with chlorin p(6) in hamster cheek pouch model of oral carcinogenesis: dependence of mode of tumor cell death on the applied drug dose. Oral Oncol. 2011;47(6):467–71.

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi W, Liu Q, Matsumiya T, Nakagawa H, Yoshida H, Imaizumi T, Satoh K, Kimura H. Photodynamic therapy upregulates expression of Mac-1 and generation of leukotriene B(4) by human polymorphonuclear leukocytes. Oral Oncol. 2004;40(5):506–10.

    Article  CAS  PubMed  Google Scholar 

  95. Sharma S, Jajoo A, Dube A. 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines. J Photochem Photobiol B. 2007;88(2–3):156–62.

    Article  CAS  PubMed  Google Scholar 

  96. Mijan MC, Longo JPF, Melo LNDd, Simioni AR, Tedesco AC, Azevedo RB. Vascular shutdown and pro-inflammatory cytokine expression in breast cancer tumors after photodynamic therapy mediated by nano-sized liposomes containing aluminium-chloride-phthalocyanine. J Nanomed Nanotechnol. 2014;5(218).

    Google Scholar 

  97. Kabingu E, Oseroff AR, Wilding GE, Gollnick SO. Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin Cancer Res. 2009;15(13):4460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol Immunother. 2006;55(8):900–9.

    Article  CAS  PubMed  Google Scholar 

  99. Korbelik M, Stott B, Sun J. Photodynamic therapy-generated vaccines: relevance of tumour cell death expression. Br J Cancer. 2007;97(10):1381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zheng W, Harris M, Kho KW, Thong PS, Hibbs A, Olivo M, Soo KC. Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study. Oncol Rep. 2004;12(2):397–401.

    PubMed  Google Scholar 

  101. Chang YC, Yu CH. Successful treatment of oral verrucous hyperplasia with photodynamic therapy combined with cryotherapy-report of 3 cases. Photodiagn Photodyn Ther. 2014;11(2):127–9.

    Article  Google Scholar 

  102. Yang DF, Lee JW, Chen HM, Hsu YC. Topical methotrexate pretreatment enhances the therapeutic effect of topical 5-aminolevulinic acid-mediated photodynamic therapy on hamster buccal pouch precancers. J Formos Med Assoc. 2014;113(9):591–9.

    Article  CAS  PubMed  Google Scholar 

  103. Uehara M, Inokuchi T, Ikeda H. Enhanced susceptibility of mouse squamous cell carcinoma to photodynamic therapy combined with low-dose administration of cisplatin. J Oral Maxillofac Surg. 2006;64(3):390–6.

    Article  PubMed  Google Scholar 

  104. Quon H, Finlay J, Cengel K, Zhu T, O’Malley B Jr, Weinstein G. Transoral robotic photodynamic therapy for the oropharynx. Photodiagn Photodyn Ther. 2011;8(1):64–7.

    Article  Google Scholar 

  105. Fontana CR, Lerman MA, Patel N, Grecco C, Costa CA, Amiji MM, Bagnato VS, Soukos NS. Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci. 2013;28(2):479–86.

    Article  PubMed  Google Scholar 

  106. D’Cruz AK, Robinson MH, Biel MA. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study of 128 patients. Head Neck. 2004;26(3):232–40.

    Article  PubMed  Google Scholar 

  107. Toratani S, Tani R, Kanda T, Koizumi K, Yoshioka Y, Okamoto T. Photodynamic therapy using Photofrin and excimer dye laser treatment for superficial oral squamous cell carcinomas with long-term follow up. Photodiagn Photodyn Ther. 2016;1572(30):104–10. 30060-0

    Article  CAS  Google Scholar 

  108. Dougherty TJ, Cooper MT, Mang TS. Cutaneous phototoxic occurrences in patients receiving Photofrin. Lasers Surg Med. 1990;10(5):485–8.

    Article  CAS  PubMed  Google Scholar 

  109. Menter JM, Hollins TD, Sayre RM, Etemadi AA, Willis I, Hughes SN. Protection against photodynamic therapy (PDT)-induced photosensitivity by fabric materials. Photodermatol Photoimmunol Photomed. 1998;14(5–6):154–9.

    Article  CAS  PubMed  Google Scholar 

  110. Chen HM, CH Y, PC T, Yeh CY, Tsai T, Chiang CP. Successful treatment of oral verrucous hyperplasia and oral leukoplakia with topical 5-aminolevulinic acid-mediated photodynamic therapy. Lasers Surg Med. 2005;37(2):114–22.

    Article  PubMed  Google Scholar 

  111. Chen HM, Chen CT, Yang H, Lee MI, Kuo MY, Kuo YS, Wang YP, Tsai T, Chiang CP. Successful treatment of an extensive verrucous carcinoma with topical 5-aminolevulinic acid-mediated photodynamic therapy. J Oral Pathol Med. 2005;34(4):253–6.

    Article  PubMed  Google Scholar 

  112. Chiang CP, Huang WT, Lee JW, Hsu YC. Effective treatment of 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch precancerous lesions by topical photosan-mediated photodynamic therapy. Head Neck. 2012;34(4):505–12.

    Article  PubMed  Google Scholar 

  113. Leunig A, Betz CS, Mehlmann M, Stepp H, Arbogast S, Grevers G, Baumgartner R. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope. 2000;110(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  114. Kubler AC, de Carpentier J, Hopper C, Leonard AG, Putnam G. Treatment of squamous cell carcinoma of the lip using Foscan-mediated photodynamic therapy. Int J Oral Maxillofac Surg. 2001;30(6):504–9.

    Article  CAS  PubMed  Google Scholar 

  115. Kawczyk-Krupka A, Waskowska J, Raczkowska-Siostrzonek A, Kosciarz-Grzesiok A, Kwiatek S, Straszak D, Latos W, Koszowski R, Sieron A. Comparison of cryotherapy and photodynamic therapy in treatment of oral leukoplakia. Photodiagn Photodyn Ther. 2012;9(2):148–55.

    Article  Google Scholar 

  116. Chang CJ, Wilder-Smith P. Topical application of photofrin for photodynamic diagnosis of oral neoplasms. Plast Reconstr Surg. 2005;115(7):1877–86.

    Article  CAS  PubMed  Google Scholar 

  117. Yu CH, Yu CC. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS One. 2014;9(1):e87129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sharwani A, Jerjes W, Hopper C, Lewis MP, El-Maaytah M, Khalil HS, Macrobert AJ, Upile T, Salih V. Photodynamic therapy down-regulates the invasion promoting factors in human oral cancer. Arch Oral Biol. 2006;51(12):1104–11.

    Google Scholar 

  119. Li P-T, Ke E-S, Chiang P-C, Tsai T. ALA-or Ce6-PDT induced phenotypic change and suppressed migration in surviving cancer cells. J Dent Sci. 2015;10(1):74–80.

    Article  Google Scholar 

  120. Hopper C, Kubler A, Lewis H, Tan IB, Putnam G. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer. 2004;111(1):138–46.

    Article  CAS  PubMed  Google Scholar 

  121. Biel MA. Photodynamic therapy treatment of early oral and laryngeal cancers. Photochem Photobiol. 2007;83(5):1063–8.

    Article  CAS  PubMed  Google Scholar 

  122. Silverman S Jr, Gorsky M. Proliferative verrucous leukoplakia: a follow-up study of 54 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(2):154–7.

    Article  PubMed  Google Scholar 

  123. Selvam NP, Sadaksharam J, Singaravelu G, Ramu R. Treatment of oral leukoplakia with photodynamic therapy: a pilot study. J Cancer Res Ther. 2015;11(2):464–7.

    Article  CAS  PubMed  Google Scholar 

  124. Betz CS, Stepp H, Janda P, Arbogast S, Grevers G, Baumgartner R, Leunig A. A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer. 2002;97(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  125. Leunig A, Rick K, Stepp H, Gutmann R, Alwin G, Baumgartner R, Feyh J. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg. 1996;172(6):674–7.

    Article  CAS  PubMed  Google Scholar 

  126. Lin HP, Chen HM, Yu CH, Yang H, Wang YP, Chiang CP. Topical photodynamic therapy is very effective for oral verrucous hyperplasia and oral erythroleukoplakia. J Oral Pathol Med. 2010;39(8):624–30.

    Article  PubMed  Google Scholar 

  127. Tan IB, Dolivet G, Ceruse P, Vander Poorten V, Roest G, Rauschning W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study. Head Neck. 2010;32(12):1597–604.

    Article  PubMed  Google Scholar 

  128. Schweitzer VG, Somers ML. PHOTOFRIN-mediated photodynamic therapy for treatment of early stage (Tis-T2N0M0) SqCCa of oral cavity and oropharynx. Lasers Surg Med. 2010;42(1):1–8.

    Article  PubMed  Google Scholar 

  129. Jerjes W, Upile T, Hamdoon Z, Mosse CA, Akram S, Hopper C. Photodynamic therapy outcome for oral dysplasia. Lasers Surg Med. 2011;43(3):192–9.

    Article  PubMed  Google Scholar 

  130. Karakullukcu B, van Oudenaarde K, Copper MP, Klop WM, van Veen R, Wildeman M, Bing Tan I. Photodynamic therapy of early stage oral cavity and oropharynx neoplasms: an outcome analysis of 170 patients. Eur Arch Otorhinolaryngol. 2011;268(2):281–8.

    Article  PubMed  Google Scholar 

  131. Jerjes W, Upile T, Hamdoon Z, Alexander Mosse C, Morcos M, Hopper C. Photodynamic therapy outcome for T1/T2 N0 oral squamous cell carcinoma. Lasers Surg Med. 2011;43(6):463–9.

    Article  PubMed  Google Scholar 

  132. Wong SJ, Campbell B, Massey B, Lynch DP, Cohen EE, Blair E, Selle R, Shklovskaya J, Jovanovic BD, Skripkauskas S, Dew A, Kulesza P, Parimi V, Bergan RC, Szabo E. A phase I trial of aminolevulinic acid-photodynamic therapy for treatment of oral leukoplakia. Oral Oncol. 2013;49(9):970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Durbec M, Cosmidis A, Fuchsmann C, Ramade A, Ceruse P. Efficacy and safety of photodynamic therapy with temoporfin in curative treatment of recurrent carcinoma of the oral cavity and oropharynx. Eur Arch Otorhinolaryngol. 2013;270(4):1433–9.

    Article  CAS  PubMed  Google Scholar 

  134. Ikeda H, Tobita T, Ohba S, Uehara M, Asahina I. Treatment outcome of Photofrin-based photodynamic therapy for T1 and T2 oral squamous cell carcinoma and dysplasia. Photodiagn Photodyn Ther. 2013;10(3):229–35.

    Article  CAS  Google Scholar 

  135. Ramachandra M, Mohlyuddin SA, Suresh T, Sagayaraj A, Merchant S. Evaluating usefulness of 5-aminolevulinic acid induced fluorescence to guide biopsy of oral cancers and premalignant legions. Int J Head Neck Surg. 2015;6(2):64–8.

    Article  Google Scholar 

  136. Vander Poorten V, Meulemans J, Nuyts S, Clement P, Hermans R, Hauben E, Delaere P. Postoperative photodynamic therapy as a new adjuvant treatment after robot-assisted salvage surgery of recurrent squamous cell carcinoma of the base of tongue. World J Surg Oncol. 2015;13:214.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Saini R, Lee NV, Liu KY, Poh CF. Prospects in the application of photodynamic therapy in oral cancer and premalignant lesions. Cancers (Basel). 2016;8(9). pii: E83.

    Google Scholar 

  138. Rigual NR, Shafirstein G, Frustino J, Seshadri M, Cooper M, Wilding G, Sullivan MA, Henderson B. Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2013;139(7):706–11.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Patrice T. Factors in establishment and spread of photodynamic therapy. In: Patrice T, editor. Photodynamic therapy. Great Britain: Royal Society of Chemistry; 2003.

    Chapter  Google Scholar 

  140. Malefyt AP, Walton SP, Chan C. Endocytosis pathways for nucleic acid therapeutics. Nano Life. 2012;2(3):1241005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Iversena T-G, Skotlanda T, Sandviga K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. NanoToday. 2011;6(2):176–85.

    Article  CAS  Google Scholar 

  142. Berg K, Weyergang A, Prasmickaite L, Bonsted A, Hogset A, Strand MT, Wagner E, Selbo PK. Photochemical internalization (PCI): a technology for drug delivery. Methods Mol Biol. 2010;635:133–45.

    Article  CAS  PubMed  Google Scholar 

  143. Wang JT, Berg K, Hogset A, Bown SG, MacRobert AJ. Photophysical and photobiological properties of a sulfonated chlorin photosensitiser TPCS(2a) for photochemical internalisation (PCI). Photochem Photobiol Sci. 2013;12(3):519–26.

    Article  CAS  PubMed  Google Scholar 

  144. Costa Idos S, Abranches RP, Garcia MT, Pierre MB. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J Photochem Photobiol B. 2014;140:266–75.

    Article  PubMed  CAS  Google Scholar 

  145. Burgess L, Chen J, Wolter NE, Wilson B, Zheng G. Topical MMP beacon enabled fluorescence-guided resection of oral carcinoma. Biomed Opt Express. 2016;7(3):1089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Syu W-J, Yu H-P, Hsu C-Y, Rajan YC, Hsu Y-H, Chang Y-C, Hsieh W-Y, Wang C-H, Lai P-S. Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model. Small. 2012;8(13):2060–9.

    Article  CAS  PubMed  Google Scholar 

  147. Li P, Zhou G, Zhu X, Li G, Yan P, Shen L, Xu Q, Hamblin MR. Photodynamic therapy with hyperbranched poly(ether-ester) chlorin(e6) nanoparticles on human tongue carcinoma CAL-27 cells. Photodiagn Photodyn Ther. 2012;9(1):76–82.

    Article  CAS  Google Scholar 

  148. Raghavan V, Connolly JM, Fan HM, Dockery P, Wheatley A, Keogh I, Olivo M. Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer. J Nanomed Nanotechnol. 2014;5(6).

    Google Scholar 

  149. Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H, Wang YA, Chen Z, Kim S, Shin DM, Chen ZG. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano. 2014;8(7):6620–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen WH, Lecaros RL, Tseng YC, Huang L, Hsu YC. Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett. 2015;359(1):65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lecaros RL, Huang L, Lee TC, Hsu YC. Nanoparticle delivered VEGF-A siRNA enhances photodynamic therapy for head and neck cancer treatment. Mol Ther. 2016;24(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  152. Akita Y, Kozaki K, Nakagawa A, Saito T, Ito S, Tamada Y, Fujiwara S, Nishikawa N, Uchida K, Yoshikawa K, Noguchi T, Miyaishi O, Shimozato K, Saga S, Matsumoto Y. Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. Br J Dermatol. 2004;151(2):472–80.

    Article  CAS  PubMed  Google Scholar 

  153. Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T. Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res. 2001;61(11):4490–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bhuvaneswari R, Ng QF, Thong PS, Soo KC. Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model. Oncotarget. 2015;6(15):13487–505.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Uekusa M, Omura K, Nakajima Y, Hasegawa S, Harada H, Morita KI, Tsuda H. Uptake and kinetics of 5-aminolevulinic acid in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2010;39(8):802–5.

    Article  CAS  PubMed  Google Scholar 

  156. Yamamoto M, Fujita H, Katase N, Inoue K, Nagatsuka H, Utsumi K, Sasaki J, Ohuchi H. Improvement of the efficacy of 5-aminolevulinic acid-mediated photodynamic treatment in human oral squamous cell carcinoma HSC-4. Acta Med Okayama. 2013;67(3):153–64.

    CAS  PubMed  Google Scholar 

  157. Yang DF, Chen JH, Chiang CP, Huang Z, Lee JW, Liu CJ, Chang JL, Hsu YC. Improve efficacy of topical ALA-PDT by calcipotriol through up-regulation of coproporphyrinogen oxidase. Photodiagn Photodyn Ther. 2014;11(3):331–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Abdel Gaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdel Gaber, S.A. (2017). Photodynamic Diagnosis and Therapy for Oral Potentially Malignant Disorders and Cancers. In: Al Moustafa, AE. (eds) Development of Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48054-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48054-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48053-4

  • Online ISBN: 978-3-319-48054-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics