Skip to main content

The Role of Intravenous Agents in Delirium

  • Chapter
  • First Online:
Total Intravenous Anesthesia and Target Controlled Infusions

Abstract

Delirium is a symptom complex resulting from brain dysfunction and is a frequent complication in the perioperative setting. Classification into three subtypes is common: the rare hyperactive, the hypoactive, and the mixed forms of delirium. Delirium is an outcome relevant complication, as it is associated with an increased length of hospital stay, higher mortality rate, as well as an impaired long-term cognitive trajectory.

From the pathophysiological perspective, anesthesia is not—or at least not the only—cause of delirium, but rather a precipitating risk factor.

Identifying individual predisposing factors and avoiding precipitating risk factors are essential for an effective delirium prevention. The careful consideration of factors linked to general anesthesia is critical to prevent delirium and decrease anesthesia-associated risk factors.

Evidence shows that the depth of anesthesia is linked to the incidence of postoperative delirium and that too deep anesthesia (burst suppression) is a risk factor for postoperative delirium and postoperative cognitive dysfunction.

Target-controlled infusions (TCI) coupled with neuromonitoring can help to prevent inadequate depth of anesthesia linked to toxic effects of the substances, hemodynamic instability, and neuroinflammation. Anticholinergic effects known to increase the risk of postoperative delirium and postoperative cognitive dysfunction can be minimized by reduced opioid dosages if used in a TCI approach as pain is not really measurable during anesthesia, and opioid over- and underdosing play an important role to avoid postoperative delirium. Alpha-2 agonists and in particular patient groups such as in patients with intracranial hypertension ketamine might exert neuroprotective effects, and both are promising substances for a symptom-orientated counteraction of delirium. Used as an adjuvant, both ketamine and alpha-2 agonists reduce propofol and opioid requirements.

There are several substances used in the TCI setting to better predict hypnotic and sedative states.

In summary, this chapter provides an overview about postoperative delirium and focuses on intravenous agents and their role as risk factors or preventive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269:259–63.

    Article  CAS  PubMed  Google Scholar 

  2. Witlox J, Eurelings LSM, de Jonghe JFM, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA. 2010;304:443–51.

    Article  CAS  PubMed  Google Scholar 

  3. Moller J, Cluitmans P, Rasmussen L, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet. 1998;351:857–61.

    Article  CAS  PubMed  Google Scholar 

  4. van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375:773–5.

    Article  PubMed  CAS  Google Scholar 

  5. Maclullich AMJ, Anand A, Davis DHJ, Jackson T, Barugh AJ, Hall RJ, Ferguson KJ, Meagher DJ, Cunningham C. New horizons in the pathogenesis, assessment and management of delirium. Age Ageing. 2013;42:667–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maclullich AMJ, Ferguson KJ, Miller T, de Rooij SEJA, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65:229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Radtke FM, Franck M, Hagemann L, Seeling M, Wernecke KD, Spies CD. Risk factors for inadequate emergence after anesthesia: emergence delirium and hypoactive emergence. Minerva Anestesiol. 2010;76:394–403.

    CAS  PubMed  Google Scholar 

  8. Lepousé C, Lautner CA, Liu L, Gomis P, Leon A. Emergence delirium in adults in the post-anaesthesia care unit. Br J Anaesth. 2006;96:747–53.

    Article  PubMed  Google Scholar 

  9. Hudek K. Emergence delirium: a nursing perspective. AORN J. 2009;89:509–16. Quiz 517–519.

    Article  PubMed  Google Scholar 

  10. Silverstein JH, Deiner SG. Perioperative delirium and its relationship to dementia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:108–15.

    Article  PubMed  Google Scholar 

  11. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  12. Kratz T, Diefenbacher A. Acute and long-term cognitive consequences of treatment on intensive care units. Nervenarzt. 2016;87(3):246–52. doi:10.1007/s00115-016-0078-0.

    Article  CAS  PubMed  Google Scholar 

  13. Wacker P, Nunes PV, Cabrita H, Forlenza OV. Post-operative delirium is associated with poor cognitive outcome and dementia. Dement Geriatr Cogn Disord. 2006;21:221–7.

    Article  PubMed  Google Scholar 

  14. Bryson GL, Wyand A, Wozny D, Rees L, Taljaard M, Nathan H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can J Anaesth. 2011;58:246–55.

    Article  PubMed  Google Scholar 

  15. Organization WH. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.

    Google Scholar 

  16. Kazmierski J, Kowman M, Banach M, Fendler W, Okonski P, Banys A, Jaszewski R, Rysz J, Sobow T, Kloszewska I. The use of DSM-IV and ICD-10 criteria and diagnostic scales for delirium among cardiac surgery patients: results from the IPDACS study. J Neuropsychiatry Clin Neurosci. 2010;22:426–32.

    Article  PubMed  Google Scholar 

  17. Laurila JV, Pitkala KH, Strandberg TE, Tilvis RS. Impact of different diagnostic criteria on prognosis of delirium: a prospective study. Dement Geriatr Cogn Disord. 2004;18:240–4.

    Article  PubMed  Google Scholar 

  18. Cole MG, Dendukuri N, McCusker J, Han L. An empirical study of different diagnostic criteria for delirium among elderly medical inpatients. J Neuropsychiatry Clin Neurosci. 2003;15:200–7.

    Article  PubMed  Google Scholar 

  19. Morandi A, Davis D, Taylor JK, et al. Consensus and variations in opinions on delirium care: a survey of European delirium specialists. Int Psychogeriatr. 2013;25:2067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson TN, Raeburn CD, Tran ZV, Brenner LA, Moss M. Motor subtypes of postoperative delirium in older adults. Arch Surg. 2011;146:295–300.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meagher DJ, Maclullich AMJ, Laurila JV. Defining delirium for the international classification of diseases, 11th Revision. J Psychosom Res. 2008;65:207–14.

    Article  PubMed  Google Scholar 

  22. Pandharipande P, Cotton BA, Shintani A, Thompson J, Costabile S, Truman Pun B, Dittus R, Ely EW. Motoric subtypes of delirium in mechanically ventilated surgical and trauma intensive care unit patients. Intensive Care Med. 2007;33:1726–31.

    Article  PubMed  Google Scholar 

  23. Stagno D, Gibson C, Breitbart W. The delirium subtypes: a review of prevalence, phenomenology, pathophysiology, and treatment response. Palliat Support Care. 2004;2:171–9.

    Article  PubMed  Google Scholar 

  24. Neufeld KJ. Delirium classification by the diagnostic and statistical manual—a moving target. Int Psychogeriatr. 2015;27:881–2.

    Article  PubMed  Google Scholar 

  25. Blazer DG, van Nieuwenhuizen AO. Evidence for the diagnostic criteria of delirium: an update. Curr Opin Psychiatry. 2012;25:239–43.

    Article  PubMed  Google Scholar 

  26. European Delirium Association, American Delirium Society. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. 2014;12:1–4.

    Article  Google Scholar 

  27. Devlin JW, Marquis F, Riker RR, Robbins T, Garpestad E, Fong JJ, Didomenico D, Skrobik Y. Combined didactic and scenario-based education improves the ability of intensive care unit staff to recognize delirium at the bedside. Crit Care Lond Engl. 2008;12:R19.

    Article  Google Scholar 

  28. Luetz A, Balzer F, Radtke FM, Jones C, Citerio G, Walder B, Weiss B, Wernecke K-D, Spies C. Delirium, sedation and analgesia in the intensive care unit: a multinational, two-part survey among intensivists. PLoS One. 2014;9, e110935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.

    Article  PubMed  Google Scholar 

  30. DAS-Taskforce 2015, Baron R, Binder A, et al. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015)—short version. Ger Med Sci. 2015; 13: Doc 19.

    Google Scholar 

  31. Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med. 1990;113:941–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. 2001;29:1370–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    Article  CAS  PubMed  Google Scholar 

  34. Gaudreau J-D, Gagnon P, Harel F, Tremblay A, Roy M-A. Fast, systematic, and continuous delirium assessment in hospitalized patients: the nursing delirium screening scale. J Pain Symptom Manage. 2005;29:368–75.

    Article  PubMed  Google Scholar 

  35. Gusmao-Flores D, Salluh JIF, Chalhub RÁ, Quarantini LC. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care. 2012;16:R115.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Radtke FM, Franck M, Schust S, et al. A comparison of three scores to screen for delirium on the surgical ward. World J Surg. 2010;34:487–94.

    Article  PubMed  Google Scholar 

  37. Neufeld KJ, Leoutsakos J-MS, Sieber FE, Wanamaker BL, Gibson Chambers JJ, Rao V, Schretlen DJ, Needham DM. Outcomes of early delirium diagnosis after general anesthesia in the elderly. Anesth Analg. 2013;117:471–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stukenberg S, Franck M, Spies CD, Neuner B, Myers I, Radtke FM. How to advance prediction of postoperative delirium? A secondary analysis comparing three methods for very early assessment of elderly patients after surgery and early prediction of delirium. Minerva Anestesiol. 2016.

    Google Scholar 

  39. van Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study. Am J Respir Crit Care Med. 2011;184:340–4.

    Article  PubMed  Google Scholar 

  40. European Society of Anaesthesiology. European Society of Anaesthesiology, Guideline on reduction of post-operative delirium—in press. http://www.esahq.org/. Accessed 27 Feb 2016.

  41. Bruce AJ, Ritchie CW, Blizard R, Lai R, Raven P. The incidence of delirium associated with orthopedic surgery: a meta-analytic review. Int Psychogeriatr. 2007;19:197–214.

    Article  PubMed  Google Scholar 

  42. Rudolph JL, Jones RN, Levkoff SE, et al. Derivation and validation of a preoperative prediction rule for delirium after cardiac surgery. Circulation. 2009;119:229–36.

    Article  PubMed  Google Scholar 

  43. Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK, Jones RN. Cognitive trajectories after postoperative delirium. N Engl J Med. 2012;367:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maldonado JR, Wysong A, van der Starre PJA, Block T, Miller C, Reitz BA. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50:206–17.

    Article  CAS  PubMed  Google Scholar 

  45. Morimoto Y, Yoshimura M, Utada K, Setoyama K, Matsumoto M, Sakabe T. Prediction of postoperative delirium after abdominal surgery in the elderly. J Anesth. 2009;23:51–6.

    Article  PubMed  Google Scholar 

  46. Luetz A, Heymann A, Radtke FM, et al. Different assessment tools for intensive care unit delirium: which score to use? Crit Care Med. 2010;38:409–18.

    Article  PubMed  Google Scholar 

  47. Girard TD, Pandharipande PP, Ely EW. Delirium in the intensive care unit. Crit Care. 2008;12 Suppl(3):S3.

    Article  Google Scholar 

  48. Ely EW, Girard TD, Shintani AK, et al. Apolipoprotein E4 polymorphism as a genetic predisposition to delirium in critically ill patients. Crit Care Med. 2007;35:112–7.

    Article  CAS  PubMed  Google Scholar 

  49. Inouye SK, Peduzzi PN, Robison JT, Hughes JS, Horwitz RI, Concato J. Importance of functional measures in predicting mortality among older hospitalized patients. JAMA. 1998;279:1187–93.

    Article  CAS  PubMed  Google Scholar 

  50. Inouye SK, Charpentier PA. Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationship with baseline vulnerability. JAMA. 1996;275:852–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, Inouye SK, Bernard GR, Dittus RS. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291:1753–62.

    Article  CAS  PubMed  Google Scholar 

  52. Pisani MA, Kong SYJ, Kasl SV, Murphy TE, Araujo KLB, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180:1092–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ely EW, Gautam S, Margolin R, Francis J, May L, Speroff T, Truman B, Dittus R, Bernard R, Inouye SK. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med. 2001;27:1892–900.

    Article  CAS  PubMed  Google Scholar 

  54. Drews T, Franck M, Radtke FM, Weiss B, Krampe H, Brockhaus WR, Winterer G, Spies CD. Postoperative delirium is an independent risk factor for posttraumatic stress disorder in the elderly patient: a prospective observational study. Eur J Anaesthesiol. 2015;32:147–51.

    Article  PubMed  Google Scholar 

  55. Kat MG, Vreeswijk R, de Jonghe JFM, van der Ploeg T, van Gool WA, Eikelenboom P, Kalisvaart KJ. Long-term cognitive outcome of delirium in elderly hip surgery patients. A prospective matched controlled study over two and a half years. Dement Geriatr Cogn Disord. 2008;26:1–8.

    Article  PubMed  Google Scholar 

  56. Bellelli G, Mazzola P, Morandi A, et al. Duration of postoperative delirium is an independent predictor of 6-month mortality in older adults after hip fracture. J Am Geriatr Soc. 2014;62:1335–40.

    Article  PubMed  Google Scholar 

  57. Krzych LJ, Wybraniec MT, Krupka-Matuszczyk I, Skrzypek M, Bolkowska A, Wilczyński M, Bochenek AA. Detailed insight into the impact of postoperative neuropsychiatric complications on mortality in a cohort of cardiac surgery subjects: a 23,000-patient-year analysis. J Cardiothorac Vasc Anesth. 2014;28:448–57.

    Article  PubMed  Google Scholar 

  58. Bickel H, Gradinger R, Kochs E, Förstl H. High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study. Dement Geriatr Cogn Disord. 2008;26:26–31.

    Article  PubMed  Google Scholar 

  59. Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, ISPOCD Group. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110:548–55.

    Article  PubMed  Google Scholar 

  60. Cunningham C. Systemic inflammation and delirium: important co-factors in the progression of dementia. Biochem Soc Trans. 2011;39:945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.

    Article  CAS  PubMed  Google Scholar 

  62. Willard LB, Hauss-Wegrzyniak B, Wenk GL. Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience. 1999;88:193–200.

    Article  CAS  PubMed  Google Scholar 

  63. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, Knapp DJ, Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watkins LR, Maier SF. Implications of immune-to-brain communication for sickness and pain. Proc Natl Acad Sci U S A. 1999;96:7710–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L. Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation. 2005;2:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gandhi GK, Ball KK, Cruz NF, Dienel GA. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro. 2010;2(2), e00030. doi:10.1042/AN20090048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Patel SB, Poston JT, Pohlman A, Hall JB, Kress JP. Rapidly reversible, sedation-related delirium versus persistent delirium in the intensive care unit. Am J Respir Crit Care Med. 2014;189:658–65.

    Article  PubMed  Google Scholar 

  68. Lu LX, Yon J-H, Carter LB, Jevtovic-Todorovic V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis. 2006;11:1603–15.

    Article  CAS  PubMed  Google Scholar 

  69. Wei H. The role of calcium dysregulation in anesthetic-mediated neurotoxicity. Anesth Analg. 2011;113:972–4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kalb A, von Haefen C, Sifringer M, Tegethoff A, Paeschke N, Kostova M, Feldheiser A, Spies CD. Acetylcholinesterase inhibitors reduce neuroinflammation and -degeneration in the cortex and hippocampus of a surgery stress rat model. PLoS One. 2013;8, e62679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Radtke FM, Franck M, Lendner J, Krüger S, Wernecke KD, Spies CD. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth. 2013;110 Suppl 1:i98–105.

    Article  CAS  PubMed  Google Scholar 

  72. Andresen JM, Girard TD, Pandharipande PP, Davidson MA, Ely EW, Watson PL. Burst suppression on processed electroencephalography as a predictor of postcoma delirium in mechanically ventilated ICU patients. Crit Care Med. 2014;42:2244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kertai MD, Pal N, Palanca BJA, Lin N, Searleman SA, Zhang L, Burnside BA, Finkel KJ, Avidan MS, B-Unaware Study Group. Association of perioperative risk factors and cumulative duration of low bispectral index with intermediate-term mortality after cardiac surgery in the B-Unaware Trial. Anesthesiology. 2010;112:1116–27.

    Article  PubMed  Google Scholar 

  74. Leslie K, Myles PS, Forbes A, Chan MTV. The effect of bispectral index monitoring on long-term survival in the B-aware trial. Anesth Analg. 2010;110:816–22.

    Article  PubMed  Google Scholar 

  75. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4–10.

    Article  PubMed  Google Scholar 

  76. American Geriatrics Society. Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. J Am Coll Surg. 2015;220:136–48.

    Article  Google Scholar 

  77. Nobili A, Marengoni A, Tettamanti M, et al. Association between clusters of diseases and polypharmacy in hospitalized elderly patients: results from the REPOSI study. Eur J Intern Med. 2011;22:597–602.

    Article  PubMed  Google Scholar 

  78. Sündermann S, Dademasch A, Praetorius J, Kempfert J, Dewey T, Falk V, Mohr F-W, Walther T. Comprehensive assessment of frailty for elderly high-risk patients undergoing cardiac surgery. Eur J Cardiothorac Surg. 2011;39:33–7.

    Article  PubMed  Google Scholar 

  79. Mannucci PM, Nobili A, Investigators REPOSI. Multimorbidity and polypharmacy in the elderly: lessons from REPOSI. Intern Emerg Med. 2014;9:723–34.

    Article  PubMed  Google Scholar 

  80. Makary MA, Segev DL, Pronovost PJ, et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010;210:901–8.

    Article  PubMed  Google Scholar 

  81. Jankowski CJ, Trenerry MR, Cook DJ, Buenvenida SL, Stevens SR, Schroeder DR, Warner DO. Cognitive and functional predictors and sequelae of postoperative delirium in elderly patients undergoing elective joint arthroplasty. Anesth Analg. 2011;112:1186–93.

    Article  PubMed  Google Scholar 

  82. Santos-Eggimann B, Cuénoud P, Spagnoli J, Junod J. Prevalence of frailty in middle-aged and older community-dwelling Europeans living in 10 countries. J Gerontol A Biol Sci Med Sci. 2009;64:675–81.

    Article  PubMed  Google Scholar 

  83. Brimblecombe CN, Lim WK, Sunderland Y. Preoperative comprehensive geriatric assessment: outcomes in elective lower limb joint replacement surgery for complex older adults. J Am Geriatr Soc. 2014;62:1396–8.

    Article  PubMed  Google Scholar 

  84. van Meenen LCC, van Meenen DMP, de Rooij SE, ter Riet G. Risk prediction models for postoperative delirium: a systematic review and meta-analysis. J Am Geriatr Soc. 2014;62:2383–90.

    Article  PubMed  Google Scholar 

  85. Grove WM, Zald DH, Lebow BS, Snitz BE, Nelson C. Clinical versus mechanical prediction: a meta-analysis. Psychol Assess. 2000;12:19–30.

    Article  CAS  PubMed  Google Scholar 

  86. Ellard L, Katznelson R, Wasowicz M, Ashworth A, Carroll J, Lindsay T, Djaiani G. Type of anesthesia and postoperative delirium after vascular surgery. J Cardiothorac Vasc Anesth. 2014;28:458–61.

    Article  PubMed  Google Scholar 

  87. Wang Y, Sands LP, Vaurio L, Mullen EA, Leung JM. The effects of postoperative pain and its management on postoperative cognitive dysfunction. Am J Geriatr Psychiatry. 2007;15:50–9.

    Article  CAS  PubMed  Google Scholar 

  88. Wang N-Y, Hirao A, Sieber F. Association between intraoperative blood pressure and postoperative delirium in elderly hip fracture patients. PLoS One. 2015;10, e0123892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Für Psychiatr Nervenkrankh. 1933;98:231–54.

    Article  Google Scholar 

  90. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 1997;86:836–47.

    Article  CAS  PubMed  Google Scholar 

  91. Schultz B, Grouven U, Schultz A. Automatic classification algorithms of the EEG monitor Narcotrend for routinely recorded EEG data from general anaesthesia: a validation study. Biomed Tech (Berl). 2002;47:9–13.

    Article  CAS  Google Scholar 

  92. Revuelta M, Paniagua P, Campos JM, Fernández JA, Martínez A, Jospin M, Litvan H. Validation of the index of consciousness during sevoflurane and remifentanil anaesthesia: a comparison with the bispectral index and the cerebral state index. Br J Anaesth. 2008;101:653–8.

    Article  CAS  PubMed  Google Scholar 

  93. Avidan MS, Jacobsohn E, Glick D, et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med. 2011;365:591–600.

    Article  CAS  PubMed  Google Scholar 

  94. Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. Variation of bispectral index under TIVA with propofol in a paediatric population. Br J Anaesth. 2008;100:82–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamamura T, Fukuda M, Takeya H, Goto Y, Furukawa K. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg. 1981;60:283–8.

    Article  CAS  PubMed  Google Scholar 

  96. Tsuda N, Hayashi K, Hagihira S, Sawa T. Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesiol Scand. 2007;51:472–81.

    Article  CAS  PubMed  Google Scholar 

  97. Akeju O, Pavone KJ, Westover MB, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology. 2014;121:978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sieber FE, Zakriya KJ, Gottschalk A, Blute M-R, Lee HB, Rosenberg PB, Mears SC. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc. 2010;85:18–26.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Whitlock EL, Torres BA, Lin N, Helsten DL, Nadelson MR, Mashour GA, Avidan MS. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg. 2014;118:809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soehle M, Dittmann A, Ellerkmann RK, Baumgarten G, Putensen C, Guenther U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol. 2015;15:61.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karwacki Z, Niewiadomski S, Rzaska M, Witkowska M. The effect of bispectral index monitoring on anaesthetic requirements in target-controlled infusion for lumbar microdiscectomy. Anaesthesiol Intensive Ther. 2014;46:284–8.

    Article  PubMed  Google Scholar 

  102. Lin B-F, Huang Y-S, Kuo C-P, Ju D-T, Lu C-H, Cherng C-H, Wu C-T. Comparison of A-line autoregressive index and observer assessment of alertness/sedation scale for monitored anesthesia care with target-controlled infusion of propofol in patients undergoing percutaneous vertebroplasty. J Neurosurg Anesthesiol. 2011;23:6–11.

    Article  PubMed  Google Scholar 

  103. Kroeger D, Florea B, Amzica F. Human brain activity patterns beyond the isoelectric line of extreme deep coma. PLoS One. 2013;8, e75257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kroeger D, Amzica F. Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci Off J Soc Neurosci. 2007;27:10597–607.

    Article  CAS  Google Scholar 

  105. Conti A, Iacopino DG, Fodale V, Micalizzi S, Penna O, Santamaria LB. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth. 2006;97:333–9.

    Article  CAS  PubMed  Google Scholar 

  106. Lewis LD, Ching S, Weiner VS, Peterfreund RA, Eskandar EN, Cash SS, Brown EN, Purdon PL. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain J Neurol. 2013;136:2727–37.

    Article  Google Scholar 

  107. Purdon PL, Pavone KJ, Akeju O, Smith AC, Sampson AL, Lee J, Zhou DW, Solt K, Brown EN. The Ageing Brain: age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth. 2015;115 Suppl 1:i46–57.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:22665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alkire MT, Gruver R, Miller J, McReynolds JR, Hahn EL, Cahill L. Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc Natl Acad Sci U S A. 2008;105:1722–7.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110:E1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ku S-W, Lee U, Noh G-J, Jun I-G, Mashour GA. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One. 2011;6, e25155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008;52:289–94.

    Article  CAS  PubMed  Google Scholar 

  113. Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013;118:1264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shafer SL, Stanski DR. Defining depth of anesthesia. Handb Exp Pharmacol. 2008;182:409–23.

    Article  CAS  Google Scholar 

  115. Kay B, Rolly G. I.C.I. 35868, a new intravenous induction agent. Acta Anaesthesiol Belg. 1977;28:303–16.

    CAS  PubMed  Google Scholar 

  116. Schwilden H. A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20:379–86.

    Article  CAS  PubMed  Google Scholar 

  117. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.

    Article  CAS  PubMed  Google Scholar 

  118. Schüttler J, Schwilden H, Stoekel H. Pharmacokinetics as applied to total intravenous anaesthesia. Practical implications. Anaesthesia. 1983;38(Suppl):53–6.

    Article  PubMed  Google Scholar 

  119. Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68:261–6.

    Article  CAS  PubMed  Google Scholar 

  120. Whitlock EL, Rodebaugh TL, Hassett AL, et al. Psychological sequelae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg. 2015;120:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Luginbühl M, Schumacher PM, Vuilleumier P, Vereecke H, Heyse B, Bouillon TW, Struys MMRF. Noxious stimulation response index: a novel anesthetic state index based on hypnotic-opioid interaction. Anesthesiology. 2010;112:872–80.

    Article  PubMed  Google Scholar 

  122. Wu Y, Zhang F, Sun K, Yu L, Zhang H, Yan M. Evaluation of pleth variability index for predicting hypotension during induction of anesthesia in surgical patients. Zhonghua Yi Xue Za Zhi. 2014;94:3167–70.

    CAS  PubMed  Google Scholar 

  123. Maughan BC, Seigel TA, Napoli AM. Pleth variability index and fluid responsiveness of hemodynamically stable patients after cardiothoracic surgery. Am J Crit Care. 2015;24:172–5.

    Article  PubMed  Google Scholar 

  124. Wong DDL, Bailey CR. Emergence delirium in children. Anaesthesia. 2015;70:383–7.

    Article  CAS  PubMed  Google Scholar 

  125. Dahmani S, Delivet H, Hilly J. Emergence delirium in children: an update. Curr Opin Anaesthesiol. 2014;27:309–15.

    Article  CAS  PubMed  Google Scholar 

  126. Anderson BJ, Hodkinson B. Are there still limitations for the use of target-controlled infusion in children? Curr Opin Anaesthesiol. 2010;23:356–62.

    Article  PubMed  Google Scholar 

  127. Anderson BJ. Pediatric models for adult target-controlled infusion pumps. Paediatr Anaesth. 2010;20:223–32.

    Article  PubMed  Google Scholar 

  128. Arai Y-CP, Fukunaga K, Hirota S. Comparison of a combination of midazolam and diazepam and midazolam alone as oral premedication on preanesthetic and emergence condition in children. Acta Anaesthesiol Scand. 2005;49:698–701.

    Article  CAS  PubMed  Google Scholar 

  129. Chen K, Shen X. Dexmedetomidine and propofol total intravenous anesthesia for airway foreign body removal. Ir J Med Sci. 2014;183:481–4.

    Article  CAS  PubMed  Google Scholar 

  130. Ko YP, Huang CJ, Hung YC, Su NY, Tsai PS, Chen CC, Cheng CR. Premedication with low-dose oral midazolam reduces the incidence and severity of emergence agitation in pediatric patients following sevoflurane anesthesia. Acta Anaesthesiol Sin. 2001;39:169–77.

    CAS  PubMed  Google Scholar 

  131. Ali AR, El Ghoneimy MN. Dexmedetomidine versus fentanyl as adjuvant to propofol: comparative study in children undergoing extracorporeal shock wave lithotripsy. Eur J Anaesthesiol. 2010;27:1058–64.

    Article  CAS  PubMed  Google Scholar 

  132. Pasin L, Febres D, Testa V, Frati E, Borghi G, Landoni G, Zangrillo A. Dexmedetomidine vs midazolam as preanesthetic medication in children: a meta-analysis of randomized controlled trials. Paediatr Anaesth. 2015;25:468–76.

    Article  PubMed  Google Scholar 

  133. Dahmani S, Brasher C, Stany I, Golmard J, Skhiri A, Bruneau B, Nivoche Y, Constant I, Murat I. Premedication with clonidine is superior to benzodiazepines. A meta analysis of published studies. Acta Anaesthesiol Scand. 2010;54:397–402.

    Article  CAS  PubMed  Google Scholar 

  134. Sun L, Guo R, Sun L. Dexmedetomidine for preventing sevoflurane-related emergence agitation in children: a meta-analysis of randomized controlled trials. Acta Anaesthesiol Scand. 2014;58:642–50.

    Article  CAS  PubMed  Google Scholar 

  135. Dahmani S, Stany I, Brasher C, Lejeune C, Bruneau B, Wood C, Nivoche Y, Constant I, Murat I. Pharmacological prevention of sevoflurane- and desflurane-related emergence agitation in children: a meta-analysis of published studies. Br J Anaesth. 2010;104:216–23.

    Article  CAS  PubMed  Google Scholar 

  136. Costi D, Cyna AM, Ahmed S, Stephens K, Strickland P, Ellwood J, Larsson JN, Chooi C, Burgoyne LL, Middleton P. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst Rev. 2014;9, CD007084.

    Google Scholar 

  137. Chidambaran V, Costandi A, D’Mello A. Propofol: a review of its role in pediatric anesthesia and sedation. CNS Drugs. 2015;29:543–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vanlander AV, Okun JG, de Jaeger A, et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology. 2015;122:343–52.

    Article  CAS  PubMed  Google Scholar 

  139. Kam PCA, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62:690–701.

    Article  CAS  PubMed  Google Scholar 

  140. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.

    Article  CAS  PubMed  Google Scholar 

  141. Rasmussen M, Juul N, Christensen SM, Jónsdóttir KY, Gyldensted C, Vestergaard-Poulsen P, Cold GE, Østergaard L. Cerebral blood flow, blood volume, and mean transit time responses to propofol and indomethacin in peritumor and contralateral brain regions: perioperative perfusion-weighted magnetic resonance imaging in patients with brain tumors. Anesthesiology. 2010;112:50–6.

    Article  CAS  PubMed  Google Scholar 

  142. Guo J-Y, Fang J-Y, Xu S-R, Wei M, Huang W-Q. Effects of propofol versus sevoflurane on cerebral oxygenation and cognitive outcome in patients with impaired cerebral oxygenation. Ther Clin Risk Manag. 2016;12:81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, Gravenstein JS. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108:18–30.

    Article  PubMed  Google Scholar 

  144. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  CAS  PubMed  Google Scholar 

  145. Liu S, Wei W, Ding G, Ke J, Hong F, Tian M. Relationship between depth of anesthesia and effect-site concentration of propofol during induction with the target-controlled infusion technique in elderly patients. Chin Med J (Engl). 2009;122:935–40.

    Google Scholar 

  146. Yang N, Yue Y, Pan JZ, Zuo M-Z, Shi Y, Zhou S-Z, Peng W-P, Gao J-D. Changes in the bispectral index in response to loss of consciousness and no somatic movement to nociceptive stimuli in elderly patients. Chin Med J (Engl). 2016;129:410–6.

    Article  Google Scholar 

  147. Gotoda T, Okada H, Hori K, et al. Propofol sedation with a target-controlled infusion pump and bispectral index monitoring system in elderly patients during a complex upper endoscopy procedure. Gastrointest Endosc. 2015;83(4):756–64. doi:10.1016/j.gie.2015.08.034.

    Article  PubMed  Google Scholar 

  148. Büttner N, Schultz B, Grouven U, Schultz A. EEG-adjusted target-controlled infusion: propofol target concentration with different doses of remifentanil. Anaesthesist. 2010;59:126–34.

    Article  PubMed  Google Scholar 

  149. Leslie K, Clavisi O, Hargrove J. Target-controlled infusion versus manually-controlled infusion of propofol for general anaesthesia or sedation in adults. Cochrane Database Syst Rev. 2008; CD006059.

    Google Scholar 

  150. Maze M, Virtanen R, Daunt D, Banks SJ, Stover EP, Feldman D. Effects of dexmedetomidine, a novel imidazole sedative-anesthetic agent, on adrenal steroidogenesis: in vivo and in vitro studies. Anesth Analg. 1991;73:204–8.

    Article  CAS  PubMed  Google Scholar 

  151. Klinger RY, White WD, Hale B, Habib AS, Bennett-Guerrero E. Hemodynamic impact of dexmedetomidine administration in 15,656 noncardiac surgical cases. J Clin Anesth. 2012;24:212–20.

    Article  CAS  PubMed  Google Scholar 

  152. Yu T, Huang Y, Guo F, Yang Y, Teboul J-L, Qiu H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J Surg Res. 2013;185:763–73.

    Article  CAS  PubMed  Google Scholar 

  153. Triltsch AE, Welte M, von Homeyer P, Grosse J, Genähr A, Moshirzadeh M, Sidiropoulos A, Konertz W, Kox WJ, Spies CD. Bispectral index-guided sedation with dexmedetomidine in intensive care: a prospective, randomized, double blind, placebo-controlled phase II study. Crit Care Med. 2002;30:1007–14.

    Article  CAS  PubMed  Google Scholar 

  154. von Dossow V, Baehr N, Moshirzadeh M, von Heymann C, Braun JP, Hein OV, Sander M, Wernecke K-D, Konertz W, Spies CD. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery. Anesth Analg. 2006;103:809–14.

    Article  CAS  Google Scholar 

  155. Shehabi Y, Bellomo R, Reade MC, et al. Early goal-directed sedation versus standard sedation in mechanically ventilated critically ill patients: a pilot study*. Crit Care Med. 2013;41:1983–91.

    Article  CAS  PubMed  Google Scholar 

  156. Bajwa SJS, Gupta S, Kaur J, Singh A, Parmar S. Reduction in the incidence of shivering with perioperative dexmedetomidine: a randomized prospective study. J Anaesthesiol Clin Pharmacol. 2012;28:86–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Soliman RN, Hassan AR, Rashwan AM, Omar AM. Prospective, randomized study to assess the role of dexmedetomidine in patients with supratentorial tumors undergoing craniotomy under general anaesthesia. Middle East J Anaesthesiol. 2011;21:325–34.

    PubMed  Google Scholar 

  158. Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.

    PubMed  Google Scholar 

  159. Tufanogullari B, White PF, Peixoto MP, Kianpour D, Lacour T, Griffin J, Skrivanek G, Macaluso A, Shah M, Provost DA. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesth Analg. 2008;106:1741–8.

    Article  CAS  PubMed  Google Scholar 

  160. Bergese SD, Patrick Bender S, McSweeney TD, Fernandez S, Dzwonczyk R, Sage K. A comparative study of dexmedetomidine with midazolam and midazolam alone for sedation during elective awake fiberoptic intubation. J Clin Anesth. 2010;22:35–40.

    Article  CAS  PubMed  Google Scholar 

  161. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW, MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14:R38.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004;32:1322–6.

    Article  CAS  PubMed  Google Scholar 

  163. Taniguchi T, Kurita A, Kobayashi K, Yamamoto K, Inaba H. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. J Anesth. 2008;22:221–8.

    Article  PubMed  Google Scholar 

  164. Peng M, Wang Y-L, Wang C-Y, Chen C. Dexmedetomidine attenuates lipopolysaccharide-induced proinflammatory response in primary microglia. J Surg Res. 2013;179:e219–25.

    Article  CAS  PubMed  Google Scholar 

  165. Al-Qadheeb NS, Balk EM, Fraser GL, Skrobik Y, Riker RR, Kress JP, Whitehead S, Devlin JW. Randomized ICU trials do not demonstrate an association between interventions that reduce delirium duration and short-term mortality: a systematic review and meta-analysis. Crit Care Med. 2014;42:1442–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dyck JB, Maze M, Haack C, Azarnoff DL, Vuorilehto L, Shafer SL. Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:821–8.

    Article  CAS  PubMed  Google Scholar 

  167. Hannivoort LN, Eleveld DJ, Proost JH, Reyntjens KMEM, Absalom AR, Vereecke HEM, Struys MMRF. Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015;123:357–67.

    Article  CAS  PubMed  Google Scholar 

  168. Park HY, Kim JY, Cho SH, Lee D, Kwak HJ. The effect of low-dose dexmedetomidine on hemodynamics and anesthetic requirement during bis-spectral index-guided total intravenous anesthesia. J Clin Monit Comput. 2015;30(4):429–35. doi:10.1007/s10877-015-9735-2.

    Article  PubMed  Google Scholar 

  169. Apan A, Doganci N, Ergan A, Büyükkoçak U. Bispectral index-guided intraoperative sedation with dexmedetomidine and midazolam infusion in outpatient cataract surgery. Minerva Anestesiol. 2009;75:239–44.

    CAS  PubMed  Google Scholar 

  170. Khan ZP, Munday IT, Jones RM, Thornton C, Mant TG, Amin D. Effects of dexmedetomidine on isoflurane requirements in healthy volunteers. 1: pharmacodynamic and pharmacokinetic interactions. Br J Anaesth. 1999;83:372–80.

    Article  CAS  PubMed  Google Scholar 

  171. Fragen RJ, Fitzgerald PC. Effect of dexmedetomidine on the minimum alveolar concentration (MAC) of sevoflurane in adults age 55 to 70 years. J Clin Anesth. 1999;11:466–70.

    Article  CAS  PubMed  Google Scholar 

  172. Constantin J-M, Momon A, Mantz J, Payen J-F, De Jonghe B, Perbet S, Cayot S, Chanques G, Perreira B. Efficacy and safety of sedation with dexmedetomidine in critical care patients: a meta-analysis of randomized controlled trials. Anaesth Crit Care Pain Med. 2016;35:7–15.

    Article  PubMed  Google Scholar 

  173. Hayama HR, Drumheller KM, Mastromonaco M, Reist C, Cahill LF, Alkire MT. Event-related functional magnetic resonance imaging of a low dose of dexmedetomidine that impairs long-term memory. Anesthesiology. 2012;117:981–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kunisawa T, Nagashima M, Hanada S, Suzuki A, Takahata O, Iwasaki H. Awake intubation under sedation using target-controlled infusion of dexmedetomidine: five case reports. J Anesth. 2010;24:789–92.

    Article  PubMed  Google Scholar 

  175. Tsai C-J, Chu K-S, Chen T-I, Lu DV, Wang H-M, Lu I-C. A comparison of the effectiveness of dexmedetomidine versus propofol target-controlled infusion for sedation during fibreoptic nasotracheal intubation. Anaesthesia. 2010;65:254–9.

    Article  CAS  PubMed  Google Scholar 

  176. Bielka K, Kuchyn I, Glumcher F. Addition of dexmedetomidine to benzodiazepines for patients with alcohol withdrawal syndrome in the intensive care unit: a randomized controlled study. Ann Intensive Care. 2015;5:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Wang T, Ge S, Xiong W, Zhou P, Cang J, Xue Z. Effects of different loading doses of dexmedetomidine on bispectral index under stepwise propofol target-controlled infusion. Pharmacology. 2013;91:1–6.

    Article  CAS  PubMed  Google Scholar 

  178. Hall RC, Zisook S. Paradoxical reactions to benzodiazepines. Br J Clin Pharmacol. 1981;11 Suppl 1:99S–104.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly. Therapeutic considerations (Part II). Clin Pharmacokinet. 1991;21:262–73.

    Article  CAS  PubMed  Google Scholar 

  180. Massanari M, Novitsky J, Reinstein LJ. Paradoxical reactions in children associated with midazolam use during endoscopy. Clin Pediatr (Phila). 1997;36:681–4.

    Article  CAS  Google Scholar 

  181. Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, Bernard GR, Ely EW. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104:21–6.

    Article  CAS  PubMed  Google Scholar 

  182. Pandharipande P, Cotton BA, Shintani A, Thompson J, Pun BT, Morris JA, Dittus R, Ely EW. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma. 2008;65:34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Knabl J, Witschi R, Hösl K, et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451:330–4.

    Article  CAS  PubMed  Google Scholar 

  184. Ralvenius WT, Benke D, Acuña MA, Rudolph U, Zeilhofer HU. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun. 2015;6:6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nandi S, Harvey WF, Saillant J, Kazakin A, Talmo C, Bono J. Pharmacologic risk factors for post-operative delirium in total joint arthroplasty patients: a case-control study. J Arthroplasty. 2014;29:268–71.

    Article  PubMed  Google Scholar 

  186. Fritschy J-M. Significance of GABAA receptor heterogeneity: clues from developing neurons. Adv Pharmacol. 2015;73:13–39.

    Article  PubMed  Google Scholar 

  187. Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature. 1999;401:796–800.

    Article  CAS  PubMed  Google Scholar 

  188. Amatya A, Marhatta MN, Shrestha GS, Shrestha A, Amatya A. A comparison of midazolam co-induction with propofol priming in propofol induced anesthesia. J Nepal Health Res Counc. 2014;12:44–8.

    CAS  PubMed  Google Scholar 

  189. Martin J, Franck M, Fischer M, Spies C. Sedation and analgesia in German intensive care units: how is it done in reality? Results of a patient-based survey of analgesia and sedation. Intensive Care Med. 2006;32:1137–42.

    Article  PubMed  Google Scholar 

  190. Bauer TM, Ritz R, Haberthür C, Ha HR, Hunkeler W, Sleight AJ, Scollo-Lavizzari G, Haefeli WE. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.

    Article  CAS  PubMed  Google Scholar 

  191. Somma J, Donner A, Zomorodi K, Sladen R, Ramsay J, Geller E, Shafer SL. Population pharmacodynamics of midazolam administered by target controlled infusion in SICU patients after CABG surgery. Anesthesiology. 1998;89:1430–43.

    Article  CAS  PubMed  Google Scholar 

  192. Zomorodi K, Donner A, Somma J, Barr J, Sladen R, Ramsay J, Geller E, Shafer SL. Population pharmacokinetics of midazolam administered by target controlled infusion for sedation following coronary artery bypass grafting. Anesthesiology. 1998;89:1418–29.

    Article  CAS  PubMed  Google Scholar 

  193. Lonergan E, Luxenberg J, Areosa Sastre A, Wyller TB. Benzodiazepines for delirium. Cochrane Database Syst Rev. 2009; CD006379.

    Google Scholar 

  194. Wiltshire HR, Kilpatrick GJ, Tilbrook GS, Borkett KM. A placebo- and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): part II. Population pharmacokinetic and pharmacodynamic modeling and simulation. Anesth Analg. 2012;115:284–96.

    Article  CAS  PubMed  Google Scholar 

  195. Frank T, Thieme V, Radow L. Premedication in maxillofacial surgery under total intravenous anesthesia. Effects of clonidine compared to midazolam on the perioperative course. Anästhesiol Intensivmed Notfallmedizin Schmerzther. 2000;35:428–34.

    Article  CAS  Google Scholar 

  196. Grottke O, Müller J, Dietrich PJ, Krause TH, Wappler F. Comparison of premedication with clonidine and midazolam combined with TCI for orthopaedic shoulder surgery. Anästhesiol Intensivmed Notfallmedizin Schmerzther. 2003;38:772–80.

    CAS  Google Scholar 

  197. Zaal IJ, Devlin JW, Hazelbag M, Klein Klouwenberg PMC, van der Kooi AW, Ong DSY, Cremer OL, Groenwold RH, Slooter AJC. Benzodiazepine-associated delirium in critically ill adults. Intensive Care Med. 2015;41:2130–7.

    Article  CAS  PubMed  Google Scholar 

  198. Altiparmak B, Akça B, Yilbaş AA, Çelebi N. All about ketamine premedication for children undergoing ophthalmic surgery. Int J Clin Exp Med. 2015;8:21525–32.

    PubMed  PubMed Central  Google Scholar 

  199. Cohen L, Athaide V, Wickham ME, Doyle-Waters MM, Rose NGW, Hohl CM. The effect of ketamine on intracranial and cerebral perfusion pressure and health outcomes: a systematic review. Ann Emerg Med. 2015;65:43–51.e2.

    Article  PubMed  Google Scholar 

  200. Lenze EJ, Farber NB, Kharasch E, Schweiger J, Yingling M, Olney J, Newcomer JW. Ninety-six hour ketamine infusion with co-administered clonidine for treatment-resistant depression: a pilot randomised controlled trial. World J Biol Psychiatry. 2016;17(3):230–8.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Saligan LN, Luckenbaugh DA, Slonena EE, Machado-Vieira R, Zarate CA. An assessment of the anti-fatigue effects of ketamine from a double-blind, placebo-controlled, crossover study in bipolar disorder. J Affect Disord. 2016;194:115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Garnier M, Bonnet F. Management of anesthetic emergencies and complications outside the operating room. Curr Opin Anaesthesiol. 2014;27:437–41.

    Article  CAS  PubMed  Google Scholar 

  203. Mahmoud M, Mason KP. A forecast of relevant pediatric sedation trends. Curr Opin Anaesthesiol. 2016;29 Suppl 1:S56–67.

    Article  CAS  PubMed  Google Scholar 

  204. Kator S, Correll DJ, Ou JY, Levinson R, Noronha GN, Adams CD. Assessment of low-dose i.v. ketamine infusions for adjunctive analgesia. Am J Health Syst Pharm. 2016;73:S22–9.

    Article  PubMed  Google Scholar 

  205. Matsushita S, Oda S, Otaki K, Nakane M, Kawamae K. Change in auditory evoked potential index and bispectral index during induction of anesthesia with anesthetic drugs. J Clin Monit Comput. 2015;29:621–6.

    Article  PubMed  Google Scholar 

  206. Wang L, Johnston B, Kaushal A, Cheng D, Zhu F, Martin J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. 2016;63:311–25.

    Article  PubMed  Google Scholar 

  207. Orena EF, King AB, Hughes CG. The role of anesthesia in the prevention of postoperative delirium: a systematic review. Minerva Anestesiol. 2016;82(6):669–83.

    PubMed  Google Scholar 

  208. Ottens TH, Dieleman JM, Sauër AM, Peelen LM, Nierich AP, de Groot WJ, Nathoe HM, Buijsrogge MP, Kalkman CJ, van Dijk D, Dexamethasone for Cardiac Surgery (DECS) Study Group. Effects of dexamethasone on cognitive decline after cardiac surgery: a randomized clinical trial. Anesthesiology. 2014;121(3):492–500.

    Article  CAS  PubMed  Google Scholar 

  209. Rascón-Martínez DM, Fresán-Orellana A, Ocharán-Hernández ME, Genis-Zarate JH, Castellanos-Olivares A. The effects of ketamine on cognitive function in elderly patients undergoing ophthalmic surgery: a pilot study. Anesth Analg. 2016;122(4):969–75. doi:10.1213/ANE.0000000000001153.

    Article  PubMed  CAS  Google Scholar 

  210. Hudetz JA, Patterson KM, Iqbal Z, Gandhi SD, Byrne AJ, Hudetz AG, Warltier DC, Pagel PS. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23:651–7.

    Article  CAS  PubMed  Google Scholar 

  211. Pisani MA, Murphy TE, Araujo KLB, Slattum P, Van Ness PH, Inouye SK. Benzodiazepine and opioid use and the duration of ICU delirium in an older population. Crit Care Med. 2009;37:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Leung JM, Sands LP, Lim E, Tsai TL, Kinjo S. Does preoperative risk for delirium moderate the effects of postoperative pain and opiate use on postoperative delirium? Am J Geriatr Psychiatry. 2013;21:946–56.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Freye E. Opioids in medicine: a comprehensive review on the mode of action and the use of analgesics in different clinical pain states. Dordrecht: Springer; 2008.

    Google Scholar 

  214. Pöpping DM, Elia N, Marret E, Remy C, Tramèr MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143:990–9. Discussion 1000.

    Article  PubMed  Google Scholar 

  215. Hudcova J, McNicol E, Quah C, Lau J, Carr DB. Patient controlled opioid analgesia versus conventional opioid analgesia for postoperative pain. Cochrane Database Syst Rev. 2006; CD003348.

    Google Scholar 

  216. Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr Top Med Chem. 2004;4:1–17.

    Article  CAS  PubMed  Google Scholar 

  217. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev. 1996;48:567–92.

    CAS  PubMed  Google Scholar 

  218. Michelsen LG, Hug CC. The pharmacokinetics of remifentanil. J Clin Anesth. 1996;8:679–82.

    Article  CAS  PubMed  Google Scholar 

  219. Chen W, Chung H-H, Cheng J-T. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors. World J Gastroenterol. 2012;18:1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Radtke FM, Franck M, Lorenz M, Luetz A, Heymann A, Wernecke K-D, Spies CD. Remifentanil reduces the incidence of post-operative delirium. J Int Med Res. 2010;38:1225–32.

    Article  CAS  PubMed  Google Scholar 

  221. Motamed C, Weil G, Deschamps F, Billard V. Remifentanil target-controlled infusion: a safe rescue protocol for unexpected severe postoperative pain. J Opioid Manag. 2014;10:284–8.

    Article  PubMed  Google Scholar 

  222. Yang L, Wei B, Zhang L, Bi S, Lu W, Guo X. Pharmacodynamic interaction between propofol and remifentanil on the tolerance response to electrical tetanus stimuli. Beijing Da Xue Xue Bao. 2010;42:547–53.

    CAS  PubMed  Google Scholar 

  223. Del Gaudio A, Ciritella P, Perrotta F, Puopolo M, Lauta E, Mastronardi P, De Vivo P. Remifentanil vs fentanyl with a target controlled propofol infusion in patients undergoing craniotomy for supratentorial lesions. Minerva Anestesiol. 2006;72:309–19.

    PubMed  Google Scholar 

  224. De Baerdemaeker LEC, Jacobs S, Pattyn P, Mortier EP, Struys MMRF. Influence of intraoperative opioid on postoperative pain and pulmonary function after laparoscopic gastric banding: remifentanil TCI vs sufentanil TCI in morbid obesity. Br J Anaesth. 2007;99:404–11.

    Article  PubMed  CAS  Google Scholar 

  225. Jeleazcov C, Ihmsen H, Saari TI, Rohde D, Mell J, Fröhlich K, Krajinovic L, Fechner J, Schwilden H, Schüttler J. Patient-controlled analgesia with target-controlled infusion of hydromorphone in postoperative pain therapy. Anesthesiology. 2016;124:56–68.

    Article  CAS  PubMed  Google Scholar 

  226. Eisendrath SJ, Goldman B, Douglas J, Dimatteo L, Van Dyke C. Meperidine-induced delirium. Am J Psychiatry. 1987;144:1062–5.

    Article  CAS  PubMed  Google Scholar 

  227. Fong HK, Sands LP, Leung JM. The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review. Anesth Analg. 2006;102:1255–66.

    Article  PubMed  Google Scholar 

  228. Liu N, Pruszkowski O, Leroy JE, Chazot T, Trillat B, Colchen A, Gonin F, Fischler M. Automatic administration of propofol and remifentanil guided by the bispectral index during rigid bronchoscopic procedures: a randomized trial. Can J Anaesth. 2013;60:881–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Spies MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spies, C., Koch, S., Wolf, A., Mörgeli, R., Weiss, B. (2017). The Role of Intravenous Agents in Delirium. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics