Skip to main content

Systemic Oxidative Stress in Patients with Neurodegenerative Diseases

  • Chapter
  • First Online:
Biochemistry of Oxidative Stress

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 16))

  • 1558 Accesses

Abstract

Oxidative stress and oxidative damage have been recognized in the brain of patients with neurodegenerative diseases since the early stages of the diseases. Oxidative stress and damage have been reported in patients of Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis and vascular dementia. Products of free-radical reactions in the brain, such as lipid peroxidation products and carbonyl groups in small peptides, were determined in blood, plasma, serum and cerebrospinal fluid of patients with the mentioned diseases. There is a clear evidence of a link between brain oxidative stress and damage and circulating indicators of such damage. Body fluids from living patients represent the best source of information about brain metabolism in neurodegenerative diseases. Cerebrospinal fluid provides a unique window of brain status for neuronal cell and brain tissue alterations. The ideal biomarker of brain oxidative stress should be determined in blood or plasma that are easy to collect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hampel H, Prvulovic D, Teipel S et al (2011) The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol 95:718–728

    Article  PubMed  Google Scholar 

  2. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  3. Cristalli D, Arnal N, Marra F et al (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314:48–56

    Article  CAS  PubMed  Google Scholar 

  4. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1:19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sies H (1985) Oxidative stress, introductory remarks. Academic, London

    Book  Google Scholar 

  7. Halliwell B, Gutteridge J (1989) Lipid peroxidation-. A radical chain reaction. In: Free Radic Biol Med, 2nd edn. Clarendon, Oxford, pp 188–276

    Google Scholar 

  8. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38

    Article  Google Scholar 

  9. Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz-Clerch L, Massaro DJ (eds) Oxygen, Gene Expression, and Cellular Function. Marcel Dekker, NY, pp 1–25

    Google Scholar 

  10. Jones D (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:849–868

    Article  Google Scholar 

  11. Sies H, Jones DP (2007) Encyclopedia of Stress, Fink G (ed). 2nd edn, vol. 3. Elsevier, Amsterdam, pp 45–48

    Google Scholar 

  12. Seim S (1982) Production of reactive oxygen species and chemiluminescence by human monocytes during differentiation and lymphokine activation in vitro. Acta Pathol Microbiol Immunol Scand C 90:179–185

    CAS  PubMed  Google Scholar 

  13. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:529–625

    Google Scholar 

  14. Boveris A, Cadenas E, Reiter R et al (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci 77:347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sloane P, Zimmerman S, Suchindran C et al (2002) The public health impact of Alzheimer’s disease 2000–2050: potential implication of treatment advances. Annu Rev Public Health 23:213–231

    Article  PubMed  Google Scholar 

  16. Opazzo C, Barría MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98

    Article  Google Scholar 

  17. Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Discord 17:63–67

    Article  Google Scholar 

  18. Gordon PH (2011) The range and clinical impact of cognitive impairment in French patients with ALS: a cross-sectional study of neuropsychological test performance. Amyotroph Lateral Scler 25:1–15

    CAS  Google Scholar 

  19. Gatto EM, Carreras MC, Pargament G et al (1996) Neutrophil function, nitric oxide and blood oxidative stress in Parkinson’s disease. Mov Disord 11:261–267

    Article  CAS  PubMed  Google Scholar 

  20. Famulari A, Marschoff E, Llesuy S et al (1996) The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J Neurol Sci 141:69–78

    Article  CAS  PubMed  Google Scholar 

  21. Repetto M, Reides C, Evelson P et al (1999) Peripheral markers of oxidative stress in probable Alzheimer patients. Eur J Clin Investing 29:643–649

    Article  CAS  Google Scholar 

  22. Fiszman M, Ricart K et al (2003) Evidences of oxidative stress in familial amyloidotic polyneuropathy Type 1. Arch Neurol 60:593–597

    Article  PubMed  Google Scholar 

  23. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  24. Kozlowski H, Janck-Klos A, Brasun J et al (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders. Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  25. Hardas S, Sultana R, Clark A et al (2013) Oxidative modification of lipoic acid by HNE in Alzheimer diseased brain. Redox Biol 1:80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Navarro A, Boveris A, Bández MJ et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46:1574–1580

    Article  CAS  PubMed  Google Scholar 

  27. Navarro A, Boveris A (2009) Brain mitochondrial dysfunction and oxidative damage in Parkinson's disease. J Bioenerg Biomembr 41:517–521

    Article  CAS  PubMed  Google Scholar 

  28. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci 2:1–34

    Google Scholar 

  29. Repetto MG, Ferrarotti N, Boveris A (2010) The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch Toxicol 84:255–262

    Article  CAS  PubMed  Google Scholar 

  30. Musacco-Sebio R, Ferrarotti N, Saporito-Magriña C et al (2014) Rat brain oxidative damage in iron and copper overloads. Metallomics 6:1410–1416

    Article  CAS  PubMed  Google Scholar 

  31. Semprine J, Ferrarotti N, Musacco-Sebio R et al (2014) Brain antioxidant response to iron and copper acute intoxications in rats. Metallomics 6:2083–2089

    Article  CAS  PubMed  Google Scholar 

  32. Siciliano R, Barone E, Calabrese V et al (2011) Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol Public Health 23:213–231

    Google Scholar 

  33. Calabrese V, Cornelius C, Leso V et al (2012) Oxidative stress, glutathione status, sirtuin and celular stress response in type 2 diabetes. Biochim Biophys Acta 1822:729–736

    Article  CAS  PubMed  Google Scholar 

  34. Cornelius C, Trovato-Salinaro A, Scuto M et al (2013) cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immun Ageing 10:41–51

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trovato Salinaro A, Cornelius C, Koverech G et al (2014) Cellular stress response, redox status, and vitagenes in glaucoma, a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol 5:1–8

    Article  Google Scholar 

  36. Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    Article  CAS  PubMed  Google Scholar 

  37. Gerhardsson I, Lundh T, Minthon L, London E (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer disease. Dement Geriatr Cogn Disord 25:508–515

    Article  CAS  PubMed  Google Scholar 

  38. Vural H, Demirin H, Kara Y et al (2010) Alterations in plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J Trace Elem Med Biol 24:169–173

    Article  CAS  PubMed  Google Scholar 

  39. Serra JA, Marschoff E, Dominguez R et al (2004) Oxidative stress in Alzheimer’s and vascular dementias: masking of the antioxidant profiles by concomitant type II diabetes mellitus condition. J Neurol Sci 218:17–24

    Article  CAS  PubMed  Google Scholar 

  40. Henriksen K, O'Bryant SE, Hampel H et al (2014) The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement 10:115–131

    Article  PubMed  Google Scholar 

  41. Caldeira GI, Ferreira IL, Rego AC (2013) Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J Alzheimers Dis 34:115–131

    CAS  PubMed  Google Scholar 

  42. Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropath Exp Neurol 66:75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cummings JL, Doody R, Clark C (2007) Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurol 69:1622–1634

    Article  Google Scholar 

  44. Song F, Poljak A, Smythe G, Sachdev P (2009) plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res Rev 51:69–80

    Article  Google Scholar 

  45. Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspect Med 24:293–303

    Article  CAS  Google Scholar 

  46. Casado A, López-Fernández ME, Casado MC, La-Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33:450–458

    Article  CAS  PubMed  Google Scholar 

  47. Buendia I, Michalska P, Navarro E et al (2015) Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinfalmmation in neurodegenerative diseases. Pharmacol Ther 157:84–104

    Article  PubMed  Google Scholar 

  48. Hye A, Lymham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050

    Article  CAS  PubMed  Google Scholar 

  49. Selley M (1998) 4-Hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson disease. Free Radic Biol Med 25:169–174

    Article  CAS  PubMed  Google Scholar 

  50. Randall J, Mortberg E, Provuncher G et al (2013) Tau proteins in serum predict neurological out-come after hypoxic brain injury from cardiac arrest: results of a pilot study. Resucitation 84:351–356

    Article  CAS  Google Scholar 

  51. De Luigi A, Fragiacomo C, Lucca U et al (2001) Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mechanisms Aging Develop 122:1985–1995

    Article  Google Scholar 

  52. Solomon A, Karenhot I, Ngandu T et al (2007) Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow up study. Neurol 68:751–756

    Article  CAS  Google Scholar 

  53. Schrag M, Mueller C, Oyoyo U et al (2011) Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang Y, Chang W, Tsai N et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Bio Med Res Intl 2014:182303

    Google Scholar 

  55. Bradley M, Markesbery W, Lovell M (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer’s disease. Free Radic Biol Med 48:1570–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guzmán-Martínez L, Farías G, Maccioni R (2012) Emerging noninvasive biomarkers for early detection of Alzheimer’s disease. Arch Med Res 43:663–666

    Article  PubMed  Google Scholar 

  57. Shadri S (2006) Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimer Dis 9:393–398

    Google Scholar 

  58. Di Domenico F, Coccia R, Buttterfield A, Perluigi M (2011) Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits. Biochem Biophys Acta 1814:1785–1795

    PubMed  Google Scholar 

  59. Ravaglia G, Forti P, Maioli F et al (2007) Blood inflammatory markers and risk of dementia: the Conselice study of brain aging. Neurobiol Aging 28:1810–1820

    Article  CAS  PubMed  Google Scholar 

  60. Leutner S, Schindownski K, Frolich L et al (2005) Enhanced ROS-generation in lymphocytes of Alzheimer’s disease. Pharmacopsychiatry 38:312–315

    Article  CAS  PubMed  Google Scholar 

  61. Repetto M (2008) Clinical use of chemiluminescence assays for the determination of systemic oxidative stress. In: Popov I, Lewin G (eds) Handbook of chemiluminescent methods in oxidative stress assessment. Transword Research Network, Kerala, pp 163–194

    Google Scholar 

  62. Lustig E, Serra JA, Kohan S et al (1993) Copper-zinc superoxide dismutase activity in red blood cells and serum in demented patients and in aging. J Neurol Sci 115:18–25

    Article  PubMed  Google Scholar 

  63. McGrath LT, McGreenon BM, Brennan S et al (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malonaldehyde. QJ Med 94:485–490

    Article  CAS  Google Scholar 

  64. Conrad CC, Marshall JM, Talent TL et al (2000) Oxidized protein in Alzheimer’s plasma. Biochem Biophys Res Commun 275:678–681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the selection of patients and the plasma samples provided by Dr. Raúl Dominguez and the SOD measurements and statistics made by Dr. Jorge A. Serra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa G. Repetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Repetto, M.G., Boveris, A. (2016). Systemic Oxidative Stress in Patients with Neurodegenerative Diseases. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_22

Download citation

Publish with us

Policies and ethics