Skip to main content

Wind Energy Power Prospective

  • Chapter
  • First Online:
Renewable Energies

Abstract

Wind energy and its perspective is introduced and described in this chapter. Wind farms, in contrast to conventional power plants, are exposed to the inclement and variability of weather. As a result of these variations, wind turbines are subjected to high mechanical loads, which require a high level of maintenance to provide a cost-effective power output and care the life cycle of the equipment. The demand for wind energy continues to rise at an exponential rate, due to the reduction in operating and maintenance costs and increasing reliability of wind turbines. Wind turbines make use of condition monitoring systems that allow information to be gathered regarding the condition of the main components, and determine anomalous operating situations. The power generation plants have incorporated a basic online monitoring control system. This system generally includes sensors for monitoring key machine parameters, such as temperature, speed, fluid levels, unbalance in the rotor, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Papaelias M, Cheng L, Kogia M, Mohimi A, Kappatos V, Selcuk C, Constantinou L, Muñoz CQG, Marquez FPG, Gan T-H (2016) Inspection and structural health monitoring techniques for concentrated solar power plants. Renew Energy 85:1178–1191

    Article  Google Scholar 

  2. Pliego Marugán A, García Márquez FP, Pinar Pérez JM (2016) Optimal maintenance management of offshore wind farms. Energies 9:46

    Google Scholar 

  3. Tchakoua P, Wamkeue R, Tameghe TA, Ekemb G (2013) In A review of concepts and methods for wind turbines condition monitoring, Computer and information technology (WCCIT), 2013 World Congress on, IEEE pp 1–9

    Google Scholar 

  4. Gómez Muñoz CQ, Villegas MA, García FP, Pedregal DJ (2015) Big data and web intelligence for condition monitoring: a case study on wind turbines. Handbook of research on trends and future directions in big data and web intelligence. Information Science Reference, IGI Global: Hershey, PA, USA

    Google Scholar 

  5. Gómez Muñoz CQ, Ruiz de la Hermosa Gonzalez-Carrato R, Trapero Arenas JR, Garcia Marquez FP (2014) A novel approach to fault detection and diagnosis on wind turbines. Global Nest J 16:1029–1037

    Google Scholar 

  6. Hernández Montero FE, Ruiz Barrios ML, Rodríguez Suárez JR, Naranjo AR, Gerges S, de Miguel LJ (2011) Monitoreo por condición a aplicar en parques de turbinas eólicas. Revista de Ciencia y Tecnología 17–24

    Google Scholar 

  7. Gong X (2012) Online nonintrusive condition monitoring and fault detection for wind turbines

    Google Scholar 

  8. Gómez Muñoz CQ, García Marquez FP, Liang C, Maria K, Abbas M, Mayorkinos P (2015) A new condition monitoring approach for maintenance management in concentrate solar plants. In: Proceedings of the ninth international conference on management science and engineering management, Springer, Berlin Heidelberg, pp 999–1008

    Google Scholar 

  9. Márquez FPG, Pedregal DJ, Roberts C (2015) New methods for the condition monitoring of level crossings. Int J Syst Sci 46:878–884

    Article  Google Scholar 

  10. Márquez FPG, Pardo IPG, Nieto MRM (2013) Competitiveness based on logistic management: a real case study. Ann Oper Res 1–13

    Google Scholar 

  11. Muñoz CQG, de la Hermosa González RR Acoustic emission and signal processing for fault detection and location in composite materials

    Google Scholar 

  12. Gómez Muñoz CQ, García Márquez FP (2016) A new fault location approach for acoustic emission techniques in wind turbines. Energies 9:40

    Google Scholar 

  13. Márquez FPG, Pérez JMP, Marugán AP, Papaelias M (2015) Identification of critical components of wind turbines using fta over the time. Renew Energy

    Google Scholar 

  14. Carlsson V (2009) Measuring routines of ice accretion for wind turbine applications. Master Thesis, Umeaa Univesitet

    Google Scholar 

  15. Márquez FPG, Tobias AM, Pérez JMP, Papaelias M (2012) Condition monitoring of wind turbines: techniques and methods. Renew Energy 46:169–178

    Article  Google Scholar 

  16. Ramirez IS, Muñoz CQG, Marquez FPG (2017) In A condition monitoring system for blades of wind turbine maintenance management, Proceedings of the tenth international conference on management science and engineering management, Springer pp 3–11

    Google Scholar 

  17. Caselitz P, Giebhardt J, Kewitsch R (1999)In Advanced condition monitoring system for wind energy converters, EWEC-Conference, pp 63–66

    Google Scholar 

  18. Bilgili M, Ozbek A, Sahin B, Kahraman A (2015) An overview of renewable electric power capacity and progress in new technologies in the world. Renew Sustainable Energy Rev 49:323–334

    Article  CAS  Google Scholar 

  19. GWEC G. Global wind statistics 2014. 2015

    Google Scholar 

  20. Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7:2595–2630

    Article  Google Scholar 

  21. O’Connell A, Spiegel C, Johnson S Compendium of avian occurrence information for the continental shelf waters along the atlantic coast of the united states, final report (database section-shorebirds). Prepared by the us fish and wildlife service, hadley, md for the usgs patuxent wildlife research center, beltsville, md. Us department of the interior, geological survey, and bureau of ocean energy management headquarters, ocs study boem 2012-076. i: 2011

    Google Scholar 

  22. Papaelias M, Cheng L, Kogia M, Mohimi A, Kappatos V, Selcuk C, Constantinou L, Gómez Muñoz CQ, Marquez FPG, Gan T-H (2016) Inspection and structural health monitoring techniques for concentrated solar power plants. Renew Energy 85:1178–1191

    Google Scholar 

  23. Pliego Marugán A, García Márquez F, Pinar Pérez J (2016) Optimal maintenance management of offshore wind farms. Energies 9:46

    Google Scholar 

  24. Márquez FPG, Muñoz JMC (2012) A pattern recognition and data analysis method for maintenance management. Int J Syst Sci 43:1014–1028

    Article  Google Scholar 

  25. Fischer K, Besnard F, Bertling L (2012) Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience. IEEE Trans Energy Convers 27:184–195

    Article  Google Scholar 

  26. Márquez FPG (2010) A new method for maintenance management employing principal component analysis. Struct Durab Health Monitoring 6:89–99

    Google Scholar 

  27. Hahn B, Durstewitz M, Rohrig K (2007) Reliability of wind turbines. In wind energy, Springer, pp 329–332

    Google Scholar 

  28. García Márquez FP, García‐Pardo IP (2010) Principal component analysis applied to filtered signals for maintenance management. Qual Reliab Eng Int 26:523–527

    Google Scholar 

  29. Marquez FPG (2006) In An approach to remote condition monitoring systems management, Railway condition monitoring. The institution of engineering and technology international conference on 2006, IET: pp 156–160

    Google Scholar 

  30. Jiménez AA, Muñoz CQG, Marquez FPG, Zhang L (2017) In Artificial intelligence for concentrated solar plant maintenance management, Proceedings of the tenth international conference on management science and engineering management, Springer, pp 125–134

    Google Scholar 

  31. Echavarria E, Hahn B, van Bussel G, Tomiyama T (2008) Reliability of wind turbine technology through time. J Sol Energy Eng 130:031005

    Article  Google Scholar 

  32. Beattie A (1997) In Acoustic emission monitoring of a wind turbine blade during a fatigue test. AIAA Aerosp Sci Meet 1997:239–248

    Google Scholar 

  33. Joosse P, Blanch M, Dutton A, Kouroussis D, Philippidis T, Vionis P (2002) Acoustic emission monitoring of small wind turbine blades. J Sol Energy Eng 124:446–454

    Article  Google Scholar 

  34. Amenabar I, Mendikute A, López-Arraiza A, Lizaranzu M, Aurrekoetxea J (2011) Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Composites Part B: Eng 42:1298–1305

    Article  Google Scholar 

  35. Ciang CC, Lee J-R, Bang H-J (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol 19:122001

    Article  Google Scholar 

  36. Raišutis R, Jasiūnienė E, Šliteris R, Vladišauskas A (2008) The review of non-destructive testing techniques suitable for inspection of the wind turbine blades. Ultragarsas (ultrasound) 63:26–30

    Google Scholar 

  37. Jasiūnienė E, Raišutis R, Šliteris R, Voleišis A, Jakas M. (2008) Ultrasonic ndt of wind turbine blades using contact pulse-echo immersion testing with moving water container. Ultrasound 63

    Google Scholar 

  38. Investigación de técnicas avanzadas de deshielo y prevención de la acumulación de nieve en palas de un aerogenerador (icingblades). 2012

    Google Scholar 

  39. Pérez JMP, Márquez FPG, Tobias A, Papaelias M (2013) Wind turbine reliability analysis. Renew Sustainable Energy Rev 23:463–472

    Article  Google Scholar 

  40. Fortin G, Perron J, Ilinca A (2005) In A study of icing events at murdochville: conclusions for the wind power industry, International symposium “Wind Energy in Remote Regions”, Magdalen’s Island

    Google Scholar 

  41. Shajiee S, Pao LY, Wagner PN, Moore ED, McLeod RR (2013) In Direct ice sensing and localized closed-loop heating for active de-icing of wind turbine blades, American Control Conference (ACC) 2013, IEEE pp 634–639

    Google Scholar 

  42. Tammelin B, Böhringer A, Cavaliere M, Holttinen H, Morgan C, Seifert H, Säntti K, Vølund P (2000) Wind energy production in cold climate (weco). Final report 1 january 1996 to 31 december 1998

    Google Scholar 

  43. Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg Sci Technol 65:88–96

    Article  Google Scholar 

  44. Morgan C, Bossanyi E, Seifert H (1997) In Assessment of safety risks arising from wind turbine icing, EWEC-Conference, Bookshop for Scientific Publications, pp 141–144

    Google Scholar 

  45. Muñoz CQG, Márquez FPG, Tomás JMS (2016) Ice detection using thermal infrared radiometry on wind turbine blades. Measurement 93:157–163

    Article  Google Scholar 

  46. Pinar JM, Gómez Muñoz CQ, Segura E, García Márquez FP (2014) In A novel study of life cycle cost model of ice in blades condition monitoring systems for a wind turbine, The energy and environment knowledge week congress, Toledo, Spain, 30/10/204, Toledo, Spain

    Google Scholar 

  47. Kraj AG, Bibeau EL (2010) Phases of icing on wind turbine blades characterized by ice accumulation. Renew Energy 35:966–972

    Article  Google Scholar 

  48. Laakso T, Holttinen H, Ronsten G, Tallhaug L, Horbaty R, Baring-Gould I, Lacroix A, Peltola E, Tammelin B (2003) State-of-the-art of wind energy in cold climates. IEA annex XIX 24

    Google Scholar 

  49. Kouro S, Musalem R (2002) Tutorial introductorio a la teoría de wavelet. Artículo presentado como trabajo de la asignatura Técnicas Modernas en Automática

    Google Scholar 

  50. Khalfallah MG, Koliub AM (2007) Effect of dust on the performance of wind turbines. Desalination 209:209–220

    Article  CAS  Google Scholar 

  51. Thresher RW, Robinson MC, Veers PS (2008) Wind energy technology: current status and r & d future. Nat Renew Energy Lab

    Google Scholar 

  52. Tangler JL, Somers DM (2000) Airfoils for wind turbine. Google Patents

    Google Scholar 

  53. Lawlor SP (1995) Wind turbine rotor blade. Google Patents

    Google Scholar 

  54. Tangler JL, Somers DM (1995) Root region airfoil for wind turbine. Google Patents

    Google Scholar 

  55. Jackson K, Zuteck M, Van Dam C, Standish K, Berry D (2005) Innovative design approaches for large wind turbine blades. Wind Energy 8:141–171

    Article  Google Scholar 

  56. Van Dam C, Mayda E, Chao D, Jackson K, Zuteck M, Berry D (2005) In Innovative structural and aerodynamic design approaches for large wind turbine blades, 2005 ASME Wind Energy Symposium/The 43th AIAA Aerospace sciences meeting & Exhibit. Reno, NV, pp 68–98

    Google Scholar 

  57. Rodriguez Z, Alonso O (2015) Soiling shield for wind turbine blade. US Patent 20,150,322,916

    Google Scholar 

Download references

Acknowledgements

The work reported herewith has been financially supported by the Spanish Ministerio de Economía y Competitividad, under Research Grants DPI2015-67264-P and RTC-2016-5694-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Quiterio Gómez Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muñoz, C.Q.G., García Márquez, F.P. (2018). Wind Energy Power Prospective. In: García Márquez, F., Karyotakis, A., Papaelias, M. (eds) Renewable Energies. Springer, Cham. https://doi.org/10.1007/978-3-319-45364-4_6

Download citation

Publish with us

Policies and ethics