Skip to main content

Feedback Control Indirect Response Models

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

Abstract

Most physiological processes are subject to feedback regulation . We hypothesize that PK/PD models that do not appropriately incorporate known autoregulatory mechanisms are incomplete representations of the drug-response relationship, and may lead to an underestimation of a drug’s potency. In this chapter, a new general framework is introduced for modeling pharmacodynamic processes that are subject to autoregulation , in which the canonical IDR models of Jusko are extended to incorporate the time-course of the difference between the pharmacodynamic response and its basal value (the error signal). Following the well-established approach of traditional engineering control theory, the proposed feedback control indirect response (FC IDR) models include linear combinations of terms proportional to the error signal itself, the integral of the error signal, and the derivative of the error signal. Model equations are derived and simulations are conducted to illustrate the characteristic behaviors of FC IDR models. It is demonstrated that ignoring the contributions of feedback control mechanisms in PD studies would lead to the underestimation of drug potency. Four examples were selected from literature to illustrate the broad application of the FC IDR framework. The similarities and differences of this proposed framework and two alternate approaches that also include feedback are further discussed. The FC IDR modeling framework allows the drug’s effects to be quantified independently of the autoregulatory mechanisms that also act on the controlled variables. It addresses the difficulties long-recognized by systems physiologists in understanding the mechanisms of drug action that underlie processes subject to feedback regulation, and may provide a bridge for development of more mechanistic systems pharmacology models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolph EF (1961) Early concepts of physiological regulations. Physiol Rev 41:737–770

    CAS  PubMed  Google Scholar 

  • Agerso H, Ynddal L, Sogaard B, Zdravkovic M (2001) Pharmacokinetic and pharmacodynamic modeling of NN703, a growth hormone secretagogue, after a single po dose to human volunteers. J Clin Pharmacol 41(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Ahlstrom C, Kroon T, Peletier LA, Gabrielsson J (2013) Feedback modeling of non-esterified fatty acids in obese Zucker rats after nicotinic acid infusions. J Pharmacokinet Pharmacodyn 40(6):623–638. doi:10.1007/s10928-013-9335-z

    Article  PubMed  Google Scholar 

  • Alon U (2007) An introduction to systems biology. CRC Press, London

    Google Scholar 

  • Astrom KJ, Murray RM (2010) Feedback systems. Princeton University Press, Princeton

    Google Scholar 

  • Bolie VW (1961) Coefficients of normal blood glucose regulation. J Appl Physiol 16:783–788

    CAS  PubMed  Google Scholar 

  • Bundgaard C, Larsen F, Jorgensen M, Gabrielsson J (2006) Mechanistic model of acute autoinhibitory feedback action after administration of SSRIs in rats: application to escitalopram-induced effects on brain serotonin levels. Eur J Pharm Sci 29(5):394–404. doi:10.1016/j.ejps.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  • Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9(3):399–431

    Google Scholar 

  • Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Annu Rev Physiol 3:253–258

    CAS  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald DE, Milburn SE, Shepherd JT (1964) Effect of cardiac denervation on the maximal capacity for exercise in the racing greyhound. J Appl Physiol 19:849–852

    CAS  PubMed  Google Scholar 

  • Euler CV (1964) The gain of the hypothalamic temperature regulating mechanisms. Prog Brain Res 5:127–131

    Article  Google Scholar 

  • Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20(24):4713–4721

    Google Scholar 

  • Gabrielsson J, Peletier LA (2008) A flexible nonlinear feedback system that captures diverse patterns of adaptation and rebound. AAPS J 10(1):70–83. doi:10.1208/s12248-008-9007-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenlee M, Wingo CS, McDonough AA, Youn JH, Kone BC (2009) Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med 150(9):619–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Grodins FS (1963) Control theory and biological systems. Columbia University Press, New York

    Google Scholar 

  • Grodins FS, Gray JS, Schroeder KR, Norins AL, Jones RW (1954) Respiratory responses to CO2 inhalation; a theoretical study of a nonlinear biological regulator. J Appl Physiol 7(3):283–308

    CAS  PubMed  Google Scholar 

  • Guyton AC, Thomas CEJ, Coleman G (1973) Circulatory physiology: cardiac output and its regulation. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Gabrielsson J, Weiner D (2007) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Jones RW (1973) Principles of biological regulation. Academic Press, New York

    Google Scholar 

  • Jonkers R, Van Boxtel CJ, Oosterhuis B (1987) Beta-2-adrenoceptor-mediated hypokalemia and its abolishment by oxprenolol. Clin Pharmacol Ther 42(6):627–633

    Article  CAS  PubMed  Google Scholar 

  • Khoo MCK (2000) Physiological control systems. IEEE Press, Piscataway

    Google Scholar 

  • Kitano H (2001) Foundations of systems biology. MIT Press, Cambridge

    Google Scholar 

  • Koulnis M, Liu Y, Hallstrom K, Socolovsky M (2011) Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS ONE 6(7):e21192. doi:10.1371/journal.pone.0021192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremling A (2014) Systems biology. CRC Press, Abingdon

    Google Scholar 

  • Clynes M, Milsum JH (1970) Biomedical engineering systems. McGraw-Hill, New York

    Google Scholar 

  • Mathot RA, Geus WP (1999) Pharmacodynamic modeling of the acid inhibitory effect of ranitidine in patients in an intensive care unit during prolonged dosing: characterization of tolerance. Clin Pharmacol Ther 66(2):140–151. doi:10.1053/cp.1999.v66.99988

    Article  CAS  PubMed  Google Scholar 

  • Milhorn HT (1966) Application of control theory to physiological Systems. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Milsum JH (1966) Biological control systems analysis. McGraw-Hill, New York

    Google Scholar 

  • Muller EE, Locatelli V, Cocchi D (1999) Neuroendocrine control of growth hormone secretion. Physiol Rev 79(2):511–607

    CAS  PubMed  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51(3):533–591

    CAS  PubMed  Google Scholar 

  • Sharma A, Ebling WF, Jusko WJ (1998) Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci 87(12):1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Sherman PM, Stark L (1957) A servoanalytic study of consensual pupil reflex to light. J Neurophysiol 20(1):17–26

    CAS  PubMed  Google Scholar 

  • Shulkes A, Read M (1991) Regulation of somatostatin secretion by gastrin- and acid-dependent mechanisms. Endocrinology 129(5):2329–2334. doi:10.1210/endo-129-5-2329

    Article  CAS  PubMed  Google Scholar 

  • Stark L (1968) Neurological control systems. Plenum Press, New York

    Google Scholar 

  • Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert D, Calder M, Pitt A, Kholodenko B, Kolch W (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Science Signal 3(153):ra90. doi:10.1126/scisignal.2001212

    Article  CAS  Google Scholar 

  • Urquhart J (2003) History-informed perspectives on the modeling and simulation of therapeutic drug actions. In: Kimko HC, Duffull SB (eds). Simulation for designing clinical trials. Marcel Dekker, New York, pp 245–269

    Google Scholar 

  • Wakelkamp M, Alvan G, Gabrielsson J, Paintaud G (1996) Pharmacodynamic modeling of furosemide tolerance after multiple intravenous administration. Clin Pharmacol Ther 60(1):75–88. doi:10.1016/S0009-9236(96)90170-8

    Article  CAS  PubMed  Google Scholar 

  • Woo S, Krzyzanski W, Jusko WJ (2008) Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol 62(1):123–133. doi:10.1007/s00280-007-0582-9

    Article  CAS  PubMed  Google Scholar 

  • Yates FE, Urquhart J (1962) Control of plasma concentrations of adrenocortical hormones. Physiol Rev 42:359–433

    CAS  PubMed  Google Scholar 

  • Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, D’Argenio DZ (2016) Feedback control indirect response models. J Pharmacokinet Pharmacodyn 43(4):343–358

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant NIH/NIBIB P41-EB001978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z. D’Argenio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Zhang, Y., D’Argenio, D.Z. (2016). Feedback Control Indirect Response Models. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_11

Download citation

Publish with us

Policies and ethics