Skip to main content
Log in

Feedback modeling of non-esterified fatty acids in obese Zucker rats after nicotinic acid infusions

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study investigates the impact of disease on nicotinic acid (NiAc)-induced changes in plasma concentrations of non-esterified fatty acids (NEFA). NiAc was given by constant intravenous infusion to normal Sprague–Dawley and obese Zucker rats, and arterial blood samples were taken for analysis of NiAc, NEFA, insulin and glucose plasma concentrations. The intravenous route was intentionally selected to avoid confounding processes, such as absorption, following extravascular administration. Data were analyzed using nonlinear mixed effects modeling (NONMEM, version VI). The disposition of NiAc in the normal rats was described by a two-compartment model with endogenous synthesis of NiAc and two parallel capacity-limited elimination processes. In the obese rats disposition was described by a one-compartment model with endogenous synthesis of NiAc and one capacity-limited elimination process. The plasma concentration of NiAc drove NEFA (R) turnover via an inhibitory drug-mechanism function acting on the formation of NEFA. NEFA turnover was described by a feedback model with a moderator distributed over a series of transit compartments, where the first compartment (M 1 ) inhibited the formation of R and the last compartment (M N ) stimulated the loss of R. All processes regulating plasma NEFA concentrations were assumed to be captured by the moderator function. Differences in the pharmacodynamic response of the two strains included, in the obese animals, an increased NEFA baseline, diminished rebound and post-rebound oscillation, and a more pronounced slowly developing tolerance during the period of constant drug exposure. The feedback model captured the NiAc-induced changes in NEFA response in both the normal and obese rats. Differences in the parameter estimates between the obese and normal rats included, in the former group, increases in R 0 , k in and p by 44, 41 and 78 %, respectively, and decreases in k out and γ by 64 and 84 %, respectively. The estimates of k tol and IC 50 were similar in both groups. The NiAc–NEFA concentration–response relationship at equilibrium was substantially different in the two groups, being shifted upwards and to the right, and being shallower in the obese rats. The extent of such shifts is important, as they demonstrate the impact of disease at equilibrium and, if ignored, will lead to erroneous dose predictions and, in consequence, poorly designed studies. The proposed models are primarily aimed at screening and selecting candidates with the highest potential of becoming a viable drug in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ballantyne CM, O’Keefe JH, Gotto AM (2009) Dyslipidemia & atherosclerosis essentials, overview of atherosclerosis and dyslipidemia. Jones and Bartlett, Sudbury

    Google Scholar 

  2. National Cholesterol Education Program (2002) Detection, evaluation and treatment of high blood cholesterol in adults. http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3full.pdf

  3. Grundy SM, Mok HYI, Zech L, Berman M (1981) Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 22(1):24–36

    PubMed  CAS  Google Scholar 

  4. Vega GL, Grundy SM (1994) Lipoprotein responses to treatment with lovastatin, gemfibrozil, and nicotinic acid in normolipidemic patients with hypoalphalipoproteinemia. Arch Intern Med 154(1):73–82

    Article  PubMed  CAS  Google Scholar 

  5. Martin-Jadraque R, Tato F, Mostaza JM, Vega GL, Grundy SM (1996) Effectiveness of low-dose crystalline nicotinic acid in men with low high-density lipoprotein cholesterol levels. Arch Intern Med 156(10):1081–1088

    Article  PubMed  CAS  Google Scholar 

  6. Mostaza JM, Schulz I, Vega GL, Grundy SM (1997) Comparison of pravastatin with crystalline nicotinic acid monotherapy in treatment of combined hyperlipidemia. Am J Cardiol 79(9):1298–1301

    Article  PubMed  CAS  Google Scholar 

  7. Guyton JR, Goldberg AC, Kreisberg RA, Sprecher DL, Superko HR, O’Connor CM (1998) Effectiveness of once-nightly dosing of extended-release niacin alone and in combination for hypercholesterolemia. Am J Cardiol 82(6):737–743

    Article  PubMed  CAS  Google Scholar 

  8. Knopp RH, Alagona P, Davidson M, Goldberg AC, Kafonek SD, Kashyap M, Sprecher D, Superko HR, Jenkins S, Marcovina S (1998) Equivalent efficacy of a time-release form of niacin (Niaspan) given once-a-night versus plain niacin in the management of hyperlipidemia. Metab Clin Exp 47(9):1097–1104

    Article  PubMed  CAS  Google Scholar 

  9. Capuzzi DM, Guyton JR, Morgan JM, Goldberg AC, Kreisberg RA, Brusco OA, Brody J (1998) Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol 82(12):74–81

    Article  Google Scholar 

  10. Guyton JR, Blazing MA, Hagar J, Kashyap ML, Knopp RH, McKenney JM, Nash DT, Nash SD (2000) Extended-release niacin vs gemfibrozil for the treatment of low levels of high-density lipoprotein cholesterol. Arch Intern Med 160(8):1177–1184

    Article  PubMed  CAS  Google Scholar 

  11. Carlson LA (1963) Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med Scand 173:719–722

    Article  PubMed  CAS  Google Scholar 

  12. Lauring B, Taggart AKP, Tata JR, Dunbar R, Caro L, Cheng K, Chin J, Colletti SL, Cote J, Khalilieh S, Liu J, Luo W, MacLean AA, Peterson LB, Polis AB, Sirah W, Wu T, Liu X, Jin L, Wu K, Boatman PD, Semple G, Behan DP, Connolly DT, Lai E, Wagner JA, Wright SD, Cuffie C, Mitchel YB, Rader DJ, Paolini JF, Waters MG, Plump A (2012) Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression. Sci Transl Med 4(148):115–124

    Article  Google Scholar 

  13. Dobbins RL, Shearn SP, Byerly RL, Gao FF, Mahar KM, Napolitano A, Nachbaur GJ, Le Monnier de Gouville AC (2013) GSK256073, a selective agonist of G-protein coupled receptor 109A (GPR109A) reduces serum glucose in subjects with type 2 diabetes mellitus. Diabetes Obes Metab. doi:10.1111/dom.12132

    PubMed  Google Scholar 

  14. Fulcher GR, Walker M, Catalano C, Agius L, Alberti KGMM (1992) Metabolic effects of suppression of nonesterified fatty acid levels with acipimox in obese NIDDM subjects. Diabetes 41(11):1400–1408

    Article  PubMed  CAS  Google Scholar 

  15. Kumar S, Durrington PN, Bhatnagar D, Laing I (1994) Suppression of non-esterified fatty acids to treat type A insulin resistance syndrome. Lancet 343(8905):1073–1074

    Article  PubMed  CAS  Google Scholar 

  16. Bajaj M, Suraamornkul S, Kashyap S, Cusi K, Mandarino L, DeFronzo RA (2004) Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes. J Clin Endocrinol Metab 89(9):4649–4655

    Article  PubMed  CAS  Google Scholar 

  17. Worm D, Henriksen JE, Vaag A, Thye-Ronn P, Melander A, Beck-Nielsen H (1994) Pronounced blood glucose-lowering effect of the antilipolytic drug acipimox in noninsulin-dependent diabetes mellitus patients during a 3-day intensified treatment period. J Clin Endocrinol Metab 78(3):717–721

    Article  PubMed  CAS  Google Scholar 

  18. Metcalfe P, Johnston DG, Nosadini R (1981) Metabolic effects of acute and prolonged growth hormone excess in normal and insulin-deficient man. Diabetologia 20(2):123–128

    Article  PubMed  CAS  Google Scholar 

  19. Gill A, Johnston DG, Orskov H (1982) Metabolic interactions of glucagon and cortisol in man—studies with somatostatin. Metab Clin Exp 31(4):305–311

    Article  PubMed  CAS  Google Scholar 

  20. Mittelman SD, Bergman RN (2000) Inhibition of lipolysis causes suppression of endogenous glucose production independent of changes in insulin. Am J Physiol 279(3):630–637

    Google Scholar 

  21. Stralfors P, Bjorgell P, Belfrage P (1984) Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc Natl Acad Sci USA 81(11):3317–3321

    Article  PubMed  CAS  Google Scholar 

  22. Frayn KN, Shadid S, Hamlani R, Humphreys SM, Clark ML, Fielding BA, Boland O, Coppack SW (1994) Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol Endocrinol Metab 266(3):308–317

    Google Scholar 

  23. Sadur CN, Eckel RH (1982) Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 69(5):1119–1125

    Article  PubMed  CAS  Google Scholar 

  24. Ahlström C, Peletier LA, Jansson-Löfmark R, Gabrielsson J (2011) Feedback modeling of non-esterified fatty acids in rats after nicotinic acid infusions. J Pharmacokinet Pharmacodyn 38(1):1–24

    Article  PubMed  Google Scholar 

  25. Ahlström C, Peletier LA, Gabrielsson J (2011) Quantitative analysis of rate and extent of tolerance of biomarkers: application to nicotinic acid-induced changes in non-esterified fatty acids in rats. Eur J Pharm Sci 44(3):250–264

    Article  PubMed  Google Scholar 

  26. Ahlström C, Peletier LA, Gabrielsson J (2013) Challenge of a mechanistic feedback model describing nicotinic acid-induced changes in non-esterified fatty acids in rats. J Pharmacokinet Pharmacodyn 40(4):497–512

    Article  PubMed  Google Scholar 

  27. Levy G (1993) Integration of pharmacokinetics, pharmacodynamics and toxicokinetics in rational drug development, the case for preclinical pharmacodynamics. Plenum, New York

    Google Scholar 

  28. Zucker L, Zucker T (1961) Fatty, a new mutation in the rat. J Hered 52:275–278

    Google Scholar 

  29. Shum L, Jusko WJ (1984) Theophylline disposition in obese rats. J Pharmacol Exp Ther 228(2):380–386

    PubMed  CAS  Google Scholar 

  30. Jaber LA, Ducharme MP, Halapy H (1996) The effects of obesity on pharmacokinetics and pharmacodynamics of glipizide in patients with non-insulin-dependent diabetes mellitus. Ther Drug Monit 18(1):6–13

    Article  PubMed  CAS  Google Scholar 

  31. Cheymol G (2000) Effects of obesity on pharmacokinetics: implications for drug therapy. Clin Pharmacokinet 39(3):215–231

    Article  PubMed  CAS  Google Scholar 

  32. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NHG, Struys MMRF, Sepulveda P (2010) Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 105(4):448–456

    Article  PubMed  CAS  Google Scholar 

  33. Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49(2):71–87

    Article  PubMed  CAS  Google Scholar 

  34. Danhof M, Levy G (1984) Kinetics of drug action in disease states. I. Effect of infusion rate on phenobarbital concentrations in serum, brain and cerebrospinal fluid of normal rats at onset of loss of righting reflex. J Pharmacol Exp Ther 229(1):44–50

    PubMed  CAS  Google Scholar 

  35. Rohner-Jeanrenaud F, Proietto J, Ionescu E, Jeanrenaud B (1986) Mechanism of abnormal oral glucose tolerance of genetically obese fa/fa rats. Diabetes 35(12):1350–1355

    Article  PubMed  CAS  Google Scholar 

  36. McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metab Clin Exp 41(5):522–525

    Article  PubMed  CAS  Google Scholar 

  37. Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat “fatty”. Endocrinology 90(5):1320–1330

    Article  PubMed  CAS  Google Scholar 

  38. Martin RJ, Wangsness PJ, Gahagan JH (1978) Diurnal changes in serum metabolites and hormones in lean and obese Zucker rats. Horm Metab Res 10(3):187–192

    Article  PubMed  CAS  Google Scholar 

  39. Tannenbaum GS, Lapointe M, Gurd W, Finkelstein JA (1990) Mechanisms of impaired growth hormone secretion in genetically obese Zucker rats: roles of growth hormone-releasing factor and somatostatin. Endocrinology 127(6):3087–3095

    Article  PubMed  CAS  Google Scholar 

  40. Terrettaz J, Assimacopoulos-Jeannet F, Jeanrenaud B (1986) Severe hepatic and peripheral insulin resistance as evidenced by euglycemic clamps in genetically obese fa/fa rats. Endocrinology 118(2):674–678

    Article  PubMed  CAS  Google Scholar 

  41. Eaton RP, Conway M, Schade DS (1976) Endogenous glucagon regulation in genetically hyperlipemic obese rats. Am J Physiol 230(5):1336–1341

    PubMed  CAS  Google Scholar 

  42. Martin RJ, Gahagan JH (1977) The influence of age and fasting on serum hormones in the lean and obese-Zucker rat. Proc Soc Exp Biol Med 154(4):610–614

    Article  PubMed  CAS  Google Scholar 

  43. Popovic V, Popovic P (1960) Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol 15(4):727–728

    PubMed  CAS  Google Scholar 

  44. Isaksson C, Wallenius K, Peletier LA, Toresson H, Gabrielsson J (2009) Turnover modeling of non-esterified fatty acids in rats after multiple intravenous infusions of nicotinic acid. Dose-Response 7(3):247–269

    Article  PubMed  CAS  Google Scholar 

  45. van Schaick EA, Zuideveld KP, Tukker HE, Langemeijer MWE, Ijzerman AP, Danhof M (1998) Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-sulfophenyl)adenosine in diabetic Zucker rats: influence of the disease on the selectivity of action. J Pharmacol Exp Ther 287(1):21–30

    PubMed  Google Scholar 

  46. Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36(2):148–153

    PubMed  CAS  Google Scholar 

  47. Schonfeld G, Pfleger B (1971) Overproduction of very low-density lipoproteins by livers of genetically obese rats. Am J Physiol 220(5):1178–1181

    PubMed  CAS  Google Scholar 

  48. Schonfeld G, Felski C, Howald MA (1974) Characterization of the plasma lipoproteins of the genetically obese hyperlipoproteinemic Zucker fatty rat. J Lipid Res 15(5):457–464

    PubMed  CAS  Google Scholar 

  49. Kato R (1977) Drug metabolism under pathological and abnormal physiological states in animals and man. Xenobiotica 7:25–92

    Article  PubMed  CAS  Google Scholar 

  50. Levy G (1977) Pharmacokinetics in renal disease. Am J Med 62(4):461–465

    Article  PubMed  CAS  Google Scholar 

  51. Breimer DD (1987) Pharmacokinetics in liver disease. Pharm Weekbl Sci Ed 9(2):79–84

    Article  CAS  Google Scholar 

  52. Frayn KN, Williams CM, Arner P (1996) Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin Sci 90(4):243–253

    PubMed  CAS  Google Scholar 

  53. Rowland, Tozer (1995) Clinical pharmacokinetics, concepts and applications. Williams and Wilkins, Baltimore

    Google Scholar 

  54. Vaag AA, Beck-Nielsen H (1992) Effects of prolonged acipimox treatment on glucose and lipid metabolism and on in vivo insulin sensitivity in patients with non-insulin dependent diabetes mellitus. Acta Endocrinol (Copenh) 127(4):344–350

    CAS  Google Scholar 

  55. Garg A, Grundy SM (1990) Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. J Am Med Assoc 264(6):723–726

    Article  CAS  Google Scholar 

  56. Thadani U, Fung HL, Darke AC, Parker JO (1982) Oral isosorbide dinitrate in angina pectoris: comparison of duration of action and dose-response relation during acute and sustained therapy. Am J Cardiol 49(2):411–419

    Article  PubMed  CAS  Google Scholar 

  57. Jamrozik K, Fowler G, Vessey M, Wald N (1984) Placebo controlled trial of nicotine chewing gum in general practice. Br Med J 289(6448):794–797

    Article  CAS  Google Scholar 

  58. Parker JO, Fung HL (1984) Transdermal nitroglycerin in angina pectoris. Am J Cardiol 54(6):471–476

    Article  PubMed  CAS  Google Scholar 

  59. Jordan RA, Seth L, Casebolt P (1986) Rapidly developing tolerance to transdermal nitroglycerin in congestive heart failure. Ann Intern Med 104(3):295–298

    Article  PubMed  CAS  Google Scholar 

  60. Elkayam U, Kulick D, McIntosh N (1987) Incidence of early tolerance to hemodynamic effects of continuous infusion of nitroglycerin in patients with coronary artery disease and heart failure. Circulation 76(3):577–584

    Article  PubMed  CAS  Google Scholar 

  61. Porchet HC, Benowitz NL, Sheiner LB (1988) Pharmacodynamic model of tolerance: application to nicotine. J Pharmacol Exp Ther 244(1):231–236

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Ahlström.

Appendix

Appendix

Steady state response

The steady state values for the response R and the moderators M i (i = 1,…, N) of the feedback model, formulated in Eq. (3) and (4), are given by:

$$ R = M_{1} = \cdots = M_{N} = R_{ss} $$
(10)

where R ss is the unique solution of the equation:

$$ \frac{{{\text{d}}R}}{{{\text{d}}t}} = \frac{{k_{in} }}{{R_{ss}^{p} }} \cdot I(C_{p} ) + k_{cap} - k_{out} \cdot R_{ss}^{2} = 0 $$
(11)

in which

$$ k_{in} = (k_{out} \cdot R_{0}^{2} - k_{cap} ) \cdot R_{0}^{p} $$
(12)

and R 0 is the baseline response. There is no explicit solution to Eq. (11).

For the obese animals, k cap could not be estimated and was therefore fixed to zero throughout the analysis. Equation (11) can then be simplified and solved for R SS :

$$ R_{SS,obese} = \left( {\frac{{k_{in} }}{{k_{out} }} \cdot I(C_{p} )} \right)^{1/(2 + p)} $$
(13)

Response at baseline

At baseline, I(C p ) = 1, and Eq. (11) can be expressed as:

$$ \frac{{{\text{d}}R}}{{{\text{d}}t}} = k_{in} \cdot \frac{1}{{R_{0}^{p} }} + k_{cap} - k_{out} \cdot R_{0}^{2} = 0 $$
(14)

For the obese animals where k cap  = 0, Eq. (14) can then be simplified and solved for R 0 :

$$ R_{0} = \left( {\frac{{k_{in} }}{{k_{out} }}} \right)^{1/(2 + p)} $$
(15)

For the normal rats k cap is assumed to be small compared to the other terms in Eq. (14), and the baseline can therefore be approximated according to Eq. (15).

Steady state response at IC 50

Assuming that I max  = 1, the inhibitory drug mechanism function at IC 50 is equal to 0.5. For the obese rats, Eq. (13) can be expressed as:

$$ R_{SS,obese} = \left( {\frac{{k_{in} }}{{k_{out} }} \cdot 0.5} \right)^{1/(2 + p)} $$
(16)

If k cap for the normal animals is assumed to be smaller than the other terms in Eq. (11), the steady state response at IC 50 for the normal rats can be approximated by Eq. (16), although this will slightly underestimate the value of R SS .

Steady state response at high NiAc concentrations

As I max  = 1, it follows from the definition of I(C p ) (Eq. 2) that \( I(C_{p} ) \to 0 \) as \( C_{p} \to \infty \). This implies that:

$$ \mathop {\lim }\limits_{{C_{p} \to \infty }} R_{SS,normal} (C_{p} ) = \left( {\frac{{k_{cap} }}{{k_{out} }}} \right)^{1/2} $$
(17)

For the obese animals where k cap  = 0 it follows that:

$$ \mathop {\lim }\limits_{{C_{p} \to \infty }} R_{SS,obese} (C_{p} ) = 0 $$
(18)

For the normal animals, the sigmoidicity factor γ is equal to 2.2. At NiAc concentrations higher than 0.5 μmol L−1, \( IC_{50}^{\gamma } \ll C_{p}^{\gamma } \) and I(C p ) ≈ 0. Equation (17) is therefore valid at NiAc concentrations of 0.5 μmol L−1 and higher.

For the obese animals, the sigmoidicity factor γ is equal to 0.35 and \( IC_{50}^{\gamma } \) will then extensively affect I(C p ) at NiAc concentrations far above 1,000 μmol L−1. The steady state response \( R_{SS,obese} \) will therefore not approach zero within a therapeutic concentration interval. The steady state response \( R_{SS,obese} \) at high NiAc concentrations is still described by Eq. (13).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlström, C., Kroon, T., Peletier, L.A. et al. Feedback modeling of non-esterified fatty acids in obese Zucker rats after nicotinic acid infusions. J Pharmacokinet Pharmacodyn 40, 623–638 (2013). https://doi.org/10.1007/s10928-013-9335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9335-z

Keywords

Navigation