Skip to main content

Development of the Airways and the Vasculature in the Lungs of Birds

  • Chapter
  • First Online:
The Biology of the Avian Respiratory System

Abstract

Generally, the vertebrate lung has its origin from the endoderm in the region of the primitive foregut, where the epithelium gives rise to the airway system and the gas-exchanging units and the mesenchyme forms the connective tissue, muscles, and vessels. The lung starts as a primordium, which splits into a left and right bud each of which forms the respective lung. In birds, the lung buds form the primary bronchi from which the secondary bronchi (SB) arise. The parabronchi (PB) sprout from the SB and occupy specific locations within the lung. Atria start as excavations with attenuating cells and give rise to infundibula and finally to air capillaries. The mechanisms underlying the formation of the remarkably thin blood–gas barrier (BGB) closely resemble those of exocrine secretion, but occur in a programmed, time-limited manner. In general, they result in cutting or decapitation of the cell until the required thickness is attained. In the first step, the high columnar epithelium undergoes dramatic size reduction and loses morphological polarization by two main processes: secarecytosis (cell decapitation by cutting) and peremerecytosis (cell decapitation by squeezing, spontaneous constriction, or pinching off). Secarecytosis has at least two facets: transcellular double-membrane formation followed by separation between such membranes or cell cutting by vesiculation. Both processes lead to formation of a thin BGB. Blood vessel formation in the avian lung occurs concomitantly with formation of the airway system. There is close interaction between the budding endoderm and the surrounding mesenchyme, where their crosstalk leads to development and differentiation of the components of the functional lung. Blood vessel formation starts with vasculogenesis where blood islands are formed. The islands then form blood vessels that expand further through sprouting, and once a network is established, it is augmented and remodeled through intussusceptive angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Air capillary

BC:

Blood capillary

bFGF:

Basic fibroblast growth factor

BGB:

Blood–gas barrier

BMP-4:

Bone morphogenetic protein-4

FGF:

Fibroblast growth factor

GATA:

GATA transcription factor

HNF-3:

Hepatocyte nuclear factor 3

IA:

Intussusceptive angiogenesis

LD:

Laterodorsal secondary bronchus

MV:

Medioventral secondary bronchi

NPB:

Neopulmonic parabronchi

PB:

Parabronchus

PDGF:

Platelet-derived growth factor

PO:

Posterior secondary bronchi

PPB:

Paleopulmonic parabronchi

SA:

Sprouting angiogenesis

SB:

Secondary bronchus

Shh:

Sonic hedgehog

SMA:

Smooth muscle actin

TFG-β:

Transforming growth factor β

TGF-β1:

Transforming growth factor β1

TTF-1:

Thyroid transcription factor 1

VEGF:

Vascular endothelial growth factor

WNT5a:

Wingless-type 5

References

  • Adams RH. Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol. 2002;13:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Adams RH. Molecular control of arterial-venous blood vessel identity. J Anat. 2003;202:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambler CA, Nowicki JL, Burke AC, Bautch VL. Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol. 2001;234:352–64.

    Article  CAS  PubMed  Google Scholar 

  • Anderson-Berry A, O’Brien EA, Bleyl SB, Lawson A, Gundersen N, Ryssman D, Sweeley J, Dahl MJ, Drake CJ, Schoenwolf GC, Albertine KH. Vasculogenesis drives pulmonary vascular growth in the developing chick embryo. Dev Dyn. 2005;233:145–53.

    Article  CAS  PubMed  Google Scholar 

  • Argraves WS, Larue AC, Fleming PA, Drake CJ. VEGF signaling is required for the assembly but not the maintenance of embryonic blood vessels. Dev Dyn. 2002;225:298–304.

    Article  CAS  PubMed  Google Scholar 

  • Aumuller G, Wilhelm B, Seitz J. Apocrine secretion—fact or artifact? Ann Anat. 1999;181:437–46.

    Article  CAS  PubMed  Google Scholar 

  • Bellairs R, Osmond M. The atlas of chick development. New York: Academic; 1998.

    Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn. 2004;231:474–88.

    Article  PubMed  Google Scholar 

  • Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002;13:75–85.

    Article  CAS  PubMed  Google Scholar 

  • De La RR. Photonic crystals: microassembly in 3D. Nat Mater. 2003;2:74–6.

    Article  Google Scholar 

  • Demayo F, Minoo P, Plopper CG, Schuger L, Shannon J, Torday JS. Mesenchymal–epithelial interactions in lung development and repair: are modeling and remodeling the same process? Am J Physiol Lung Cell Mol Physiol. 2002;283:L510–7.

    Article  CAS  PubMed  Google Scholar 

  • DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE, VanIperen L, Mentink MM. Development of the pharyngeal arch system related to the pulmonary and bronchial vessels in the avian embryo. With a concept on systemic-pulmonary collateral artery formation. Circulation. 1993;87:1306–19.

    Article  CAS  PubMed  Google Scholar 

  • Deyrup-Olsen I, Luchtel DL. Secretion of mucous granules and other membrane-bound structures: a look beyond exocytosis. Int Rev Cytol. 1998;183:95–141.

    Article  CAS  PubMed  Google Scholar 

  • Djonov V, Makanya AN. New insights into intussusceptive angiogenesis. EXS. 2005;94:17–33.

    Google Scholar 

  • Duncker HR. Respirationstrakt. In: Hinrichsen KV, editor. Human-embryologie. Berlin: Springer; 1990. p. 571–606.

    Google Scholar 

  • Farkaš R. Apocrine secretion: new insights into an old phenomenon. Biochim Biophys Acta. 2015;1850:1740–50.

    Article  PubMed  Google Scholar 

  • Furuya K, Akita K, Sokabe M. Extracellular ATP mediated mechano-signaling in mammary glands. Nippon Yakurigaku Zasshi. 2004;123:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Gesase AP, Satoh Y. Apocrine secretory mechanism: recent findings and unresolved problems. Histol Histopathol. 2003;18:597–608.

    CAS  PubMed  Google Scholar 

  • Gesase AP, Satoh Y, Ono K. G-protein activation enhances Ca(2+) -dependent lipid secretion of the rat Harderian gland. Anat Embryol (Berl). 1995;192:319–28.

    Article  CAS  Google Scholar 

  • Gesase AP, Satoh Y, Ono K. Secretagogue-induced apocrine secretion in the Harderian gland of the rat. Cell Tissue Res. 1996;285:501–7.

    Article  CAS  PubMed  Google Scholar 

  • Hall SM, Hislop AA, Pierce CM, Haworth SG. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol. 2000;23:194–203.

    Article  CAS  PubMed  Google Scholar 

  • Hansen-Smith FM. Capillary network patterning during angiogenesis. Clin Exp Pharmacol Physiol. 2000;27:830–5.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K. The apocrine gland. In: Jarret A, editor. The physiology and pathophysiology of the skin. London: Academic; 1978. p. 1575–96.

    Google Scholar 

  • King AS, McLelland J. Birds: their structure and function. London: BailliĂ©re Tindall; 1984.

    Google Scholar 

  • Kliewer M, Fram EK, Brody AR, Young SL. Secretion of surfactant by rat alveolar type II cells: morphometric analysis and three-dimensional reconstruction. Exp Lung Res. 1985;9:351–61.

    Article  CAS  PubMed  Google Scholar 

  • Loscertales M, Mikels AJ, Hu JK, Donahoe PK, Roberts DJ. Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development. 2008;135:1365–76.

    Article  CAS  PubMed  Google Scholar 

  • Macuhova J, Tancin V, Bruckmaier RM. Effects of oxytocin administration on oxytocin release and milk ejection. J Dairy Sci. 2004;87:1236–44.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Scanning electron microscope study of the spatial organization of the air and blood conducting components of the avian lung (Gallus gallus variant domesticus). Anat Rec. 1988;222:145–53.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Systematic analysis of hematopoietic, vasculogenetic, and angiogenetic phases in the developing embryonic avian lung, Gallus gallus variant domesticus. Tissue Cell. 2004a;36:307–22.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Morphogenesis of the laminated, tripartite cytoarchitectural design of the blood-gas barrier of the avian lung: a systematic electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell. 2004b;36:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool. 2012;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood–gas barrier. Physiol Rev. 2005;85:811–44.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS, Settle G. An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons. Philos Trans R Soc Lond Ser B Biol Sci. 1989;326:1–57.

    Article  CAS  Google Scholar 

  • Makanya AN. Membrane-mediated development of the vertebrate blood-gas-barrier. Birth Defects Res C Embryo Today. 2016;108:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Djonov V. Development and spatial organization of the air conduits in the lung of the domestic fowl, Gallus gallus variant domesticus. Microsc Res Tech. 2008;71:689–702.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Djonov V. Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol. 2009;106:1959–69.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Djonov V. Prenatal and postnatal development of the vertebrate blood-gas barrier. In: Makanya AN, editor. The vertebrate blood-gas barrier in health and disease. Cham: Springer International; 2015. p. 39–64.

    Chapter  Google Scholar 

  • Makanya AN, Sparrow MP, Warui CN, Mwangi DK, Burri PH. Morphological analysis of the postnatally developing marsupial lung: the quokka wallaby. Anat Rec. 2001;262:253–65.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Duncker HR, Draeger A, Djonov V. Epithelial transformations in the establishment of the blood–gas barrier in the developing chick embryo lung. Dev Dyn. 2006;235:68–81.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, Djonov V. Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1136–46.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis. 2009;12:113–23.

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Koller T, Hlushchuk R, Djonov V. Pre-hatch lung development in the ostrich. Respir Physiol Neurobiol. 2012;180:183–92.

    Article  CAS  PubMed  Google Scholar 

  • Makanya A, Anagnostopoulou A, Djonov V. Development and remodeling of the vertebrate blood-gas barrier. Biomed Res Int. 2013;2013:101597.

    Article  PubMed  Google Scholar 

  • Makanya AN, Kavoi BM, Djonov V. Three-dimensional structure and disposition of the air conducting and gas exchange conduits of the avian lung: the domestic duck (Cairina moschata). ISRN Anat. 2014;2014:621982. doi:10.1155/2014/62198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • deMello DE, Reid LM. Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol. 2000;3:439–49.

    Article  CAS  PubMed  Google Scholar 

  • deMello DE, Sawyer D, Galvin N, Reid LM. Early fetal development of lung vasculature. Am J Respir Cell Mol Biol. 1997;16:568–81.

    Article  CAS  PubMed  Google Scholar 

  • Metzler G, Schaumburg-Lever G, Fehrenbacher B, Moller H. Ultrastructural localization of actin in normal human skin. Arch Dermatol Res. 1992;284:242–5.

    Article  CAS  PubMed  Google Scholar 

  • Noden DM. Origins and assembly of avian embryonic blood vessels. Ann N Y Acad Sci. 1990;588:236–49.

    Article  CAS  PubMed  Google Scholar 

  • Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, Rottier R. Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L141–9.

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama J, Yamagishi A, Kuroiwa A. Tbx4-Fgf10 system controls lung bud formation during chicken embryonic development. Development. 2003;130:1225–34.

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Ishikawa K, Oomori Y, Takede S, Ono K. Secretion mode of the harderian gland of rats after stimulation by cholinergic secretagogues. Acta Anat (Basel). 1992;143:7–13.

    Article  CAS  Google Scholar 

  • Schaumburg-Lever G, Lever WF. Secretion from human apocrine glands: an electron microscopic study. J Invest Dermatol. 1975;64:38–41.

    Article  CAS  PubMed  Google Scholar 

  • Schittny JC, Burri PH. Morphogenesis of the mammalian lung: aspects of structure and extracellular matrix. In: Massaro JD, Massaro G, Chambon P, editors. Lung development and regeneration. New York: Mercel Dekker; 2003. p. 275–317.

    Google Scholar 

  • Schittny JC, Miserocchi G, Sparrow MP. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol. 2000;23:11–8.

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM, Hyatt BA. Epithelial–mesenchymal interactions in the developing lung. Annu Rev Physiol. 2004;66:625–45.

    Article  CAS  PubMed  Google Scholar 

  • Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120:1351–83.

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Hearn GW. Ultrastructure of the apocrine-sebaceous anal scent gland of the woodchuck, Marmota monax: evidence for apocrine and merocrine secretion by a single cell type. Anat Rec. 1979;193:269–91.

    Article  CAS  PubMed  Google Scholar 

  • Stoeckelhuber M, Sliwa A, Welsch U. Histo-physiology of the scent-marking glands of the penile pad, anal pouch, and the forefoot in the aardwolf ( Proteles cristatus). Anat Rec. 2000;259:312–26.

    Article  CAS  PubMed  Google Scholar 

  • Stoeckelhuber M, Stoeckelhuber BM, Welsch U. Human glands of Moll: histochemical and ultrastructural characterization of the glands of moll in the human eyelid. J Invest Dermatol. 2003;121:28–36.

    Article  CAS  PubMed  Google Scholar 

  • Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS. Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res. 2001;88:1135–41.

    Article  CAS  PubMed  Google Scholar 

  • Volberg T, Geiger B, Kartenbeck J, Franke WW. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J Cell Biol. 1986;102:1832–42.

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res. 2005;57:26R–37R.

    Article  PubMed  Google Scholar 

  • Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol. 2010;90:73–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West NH, Bamford OS, Jones DR. A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res. 1977;176:553–64.

    Article  CAS  PubMed  Google Scholar 

  • Zeller U, Richter J. The monoptychic glands of the jugulo-sternal scent gland field of Tupaia: a TEM and SEM study. J Anat. 1990;172:25–38.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Makanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Makanya, A.N. (2017). Development of the Airways and the Vasculature in the Lungs of Birds. In: Maina, J. (eds) The Biology of the Avian Respiratory System. Springer, Cham. https://doi.org/10.1007/978-3-319-44153-5_6

Download citation

Publish with us

Policies and ethics