Skip to main content

Lifestyle Interventions to Improve Immunesenescence

  • Chapter
  • First Online:
The Ageing Immune System and Health

Abstract

Regular participation in exercise and physical activity is associated with many health benefits including improvements in metabolic and cardiorespiratory function. However, as we get older the time and intensity at which we exercise is severely reduced. Physical inactivity now accounts for a considerable proportion of age-related disease and mortality. These diseases are associated with an increased systemic inflammatory milieu and immunesenescence. Regular exercise and physical activity has been suggested to exert anti-inflammatory and anti-immunesenescence effects, potentially delaying the health declines with ageing. No immune cells are impervious to the effects of ageing and exercise appears to modify many immunological functions. Regular exercise has been shown to improve neutrophil microbicidal functions which reduce the risk of infectious disease. Exercise participation is also associated with increased immune cell telomere length, and may be related to improved vaccine responses. The anti-inflammatory effect of regular exercise and negative energy balance is evident by reduced inflammatory immune cell signatures and lower inflammatory cytokine concentrations. In this chapter we will discuss the role of physical activity and energy balance in modifying the immune system. Specifically we discuss what role each plays on limiting the incidence of immunesenescence in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee I-M et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pawelec G. Immunity and ageing in man. Exp Gerontol. 2006;41(12):1239–42.

    Article  CAS  PubMed  Google Scholar 

  3. Agahi N, Parker MG. Leisure activities and mortality. J Aging Health. 2008;20(7):855–71.

    Article  PubMed  Google Scholar 

  4. Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med Sci Sports Exerc. 2000;32(9):1601–9.

    Article  CAS  PubMed  Google Scholar 

  5. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–9. quiz 920.

    Article  CAS  PubMed  Google Scholar 

  6. Baylis D et al. Understanding how we age: insights into inflammaging. Longevity Healthspan. 2013;2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Polat M et al. Neutrophil to lymphocyte and platelet to lymphocyte ratios increase in ovarian tumors in the presence of frank stromal invasion. Clin Transl Oncol. 2015;18(5):457–63.

    Article  PubMed  CAS  Google Scholar 

  8. Michishita R et al. Effect of exercise therapy on monocyte and neutrophil counts in overweight women. Am J Med Sci. 2010;339(2):152–6.

    Article  PubMed  Google Scholar 

  9. Moro-Garcia MA et al. Frequent participation in high volume exercise throughout life is associated with a more differentiated adaptive immune response. Brain Behav Immun. 2014;39:61–74.

    Article  PubMed  Google Scholar 

  10. Yan H et al. Effect of moderate exercise on immune senescence in men. Eur J Appl Physiol. 2001;86(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  11. Bartlett DB et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johannsen NM et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW. PLoS One. 2012;7(2), e31319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawanishi N et al. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice. Physiol Rep. 2015;3(9):pii:e12534.

    Article  CAS  Google Scholar 

  14. Saito Y et al. The influence of blood glucose on neutrophil function in individuals without diabetes. Luminescence. 2013;28(4):569–73.

    Article  CAS  PubMed  Google Scholar 

  15. Woods JA et al. Effects of 6 months of moderate aerobic exercise training on immune function in the elderly. Mech Ageing Dev. 1999;109(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki S et al. Effects of regular exercise on neutrophil functions, oxidative stress parameters and antibody responses against 4-hydroxy-2-nonenal adducts in middle aged humans. Exerc Immunol Rev. 2013;19:60–71.

    PubMed  Google Scholar 

  17. Syu GD, Chen HI, Jen CJ. Differential effects of acute and chronic exercise on human neutrophil functions. Med Sci Sports Exerc. 2012;44(6):1021–7.

    Article  CAS  PubMed  Google Scholar 

  18. Syu GD, Chen HI, Jen CJ. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status. PLoS One. 2011;6(9), e24385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pyne MDB. Regulation of neutrophil function during exercise. Sports Med. 1994;17(4):245–58.

    Article  CAS  PubMed  Google Scholar 

  20. Stockley JA et al. Aberrant neutrophil functions in stable chronic obstructive pulmonary disease: the neutrophil as an immunotherapeutic target. Int Immunopharmacol. 2013;17(4):1211–7.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi M et al. Low-volume exercise training attenuates oxidative stress and neutrophils activation in older adults. Eur J Appl Physiol. 2013;113(5):1117–26.

    Article  CAS  PubMed  Google Scholar 

  22. Bote ME et al. An exploratory study of the effect of regular aquatic exercise on the function of neutrophils from women with fibromyalgia: Role of IL-8 and noradrenaline. Brain Behav Immun. 2014;39:107–12.

    Article  CAS  PubMed  Google Scholar 

  23. Hazeldine J et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Megens RT et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107(3):597–8.

    Article  CAS  PubMed  Google Scholar 

  25. Beiter T et al. Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol. 2014;117(3):325–33.

    Article  CAS  PubMed  Google Scholar 

  26. Belge K et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168(7):3536–42.

    Article  CAS  PubMed  Google Scholar 

  27. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81(3):584–92.

    Article  CAS  PubMed  Google Scholar 

  28. Panda A et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27.

    Article  CAS  PubMed  Google Scholar 

  29. Shaw A et al. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pande RL et al. Association of monocyte TNFα expression and serum inflammatory biomarkers with walking impairment in PAD. J Vasc Surg. 2015;61(1):155–61.

    Article  PubMed  Google Scholar 

  31. Flynn MG, McFarlin BK. Toll-like receptor 4: link to the anti-inflammatory effects of exercise? Exerc Sport Sci Rev. 2006;34:176–81.

    Article  PubMed  Google Scholar 

  32. Simpson RJ et al. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav Immun. 2009;23(2):232–9.

    Article  CAS  PubMed  Google Scholar 

  33. Timmerman KL et al. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol. 2008;84(5):1271–8.

    Article  CAS  PubMed  Google Scholar 

  34. Markofski MM et al. Resistance exercise training-induced decrease in circulating inflammatory CD14+CD16+ monocyte percentage without weight loss in older adults. Eur J Appl Physiol. 2014;114(8):1737–48.

    Article  CAS  PubMed  Google Scholar 

  35. Stewart LK et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19(5):389–97.

    Article  CAS  PubMed  Google Scholar 

  36. McFarlin BK et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol A Biol Sci Med Sci. 2006;61(4):388–93.

    Article  PubMed  Google Scholar 

  37. Lancaster GI et al. The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 2005;563(3):945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimizu K et al. Monocyte and T-cell responses to exercise training in elderly subjects. J Strength Cond Res. 2011;25(9):2565–72.

    Article  PubMed  Google Scholar 

  39. van Duin D, Shaw AC. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;55(9):1438–44.

    Article  PubMed  Google Scholar 

  40. Schaun MI et al. The effects of periodized concurrent and aerobic training on oxidative stress parameters, endothelial function and immune response in sedentary male individuals of middle age. Cell Biochem Funct. 2011;29(7):534–42.

    Article  CAS  PubMed  Google Scholar 

  41. Gano LB et al. Increased proinflammatory and oxidant gene expression in circulating mononuclear cells in older adults: amelioration by habitual exercise. Physiol Genomics. 2011;43(14):895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zoppini G et al. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2006;16(8):543–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kawanishi N et al. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev. 2010;16:105–18.

    PubMed  Google Scholar 

  44. Woods JA, Davis JM. Exercise, monocyte/macrophage function, and cancer. Med Sci Sports Exerc. 1994;26(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  45. Agrawal A et al. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.

    Article  CAS  PubMed  Google Scholar 

  46. LaVoy ECP et al. A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cell Immunol. 2015;295(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J et al. Effect of Tai Chi on mononuclear cell functions in patients with non-small cell lung cancer. BMC Complement Altern Med. 2015;15:3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Suchanek O et al. Intensive physical activity increases peripheral blood dendritic cells. Cell Immunol. 2010;266(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  49. Bigley AB et al. Can exercise-related improvements in immunity influence cancer prevention and prognosis in the elderly? Maturitas. 2013;76(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12(4):1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campbell PT et al. Effect of exercise on in vitro immune function: a 12-month randomized, controlled trial among postmenopausal women. J Appl Physiol (1985). 2008;104(6):1648–55.

    Article  Google Scholar 

  52. Nieman DC et al. Physical activity and immune function in elderly women. Med Sci Sports Exerc. 1993;25(7):823–31.

    Article  CAS  PubMed  Google Scholar 

  53. Shinkai S et al. Physical activity and immune senescence in men. Med Sci Sports Exerc. 1995;27(11):1516–26.

    Article  CAS  PubMed  Google Scholar 

  54. Jones LW et al. Cardiorespiratory exercise testing in clinical oncology research: systematic review and practice recommendations. Lancet Oncol. 2008;9(8):757–65.

    Article  PubMed  Google Scholar 

  55. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol. 2011;11(10):645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med. 1999;28(3):177–95.

    Article  CAS  PubMed  Google Scholar 

  57. Bigley AB et al. NK-cells have an impaired response to acute exercise and a lower expression of the inhibitory receptors KLRG1 and CD158a in humans with latent cytomegalovirus infection. Brain Behav Immun. 2012;26(1):177–86.

    Article  CAS  PubMed  Google Scholar 

  58. Bigley AB et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–71.

    Article  CAS  PubMed  Google Scholar 

  59. Pedersen L et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016;23(3):554–62.

    Article  CAS  PubMed  Google Scholar 

  60. Ouyang Q et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol. 2003;38(8):911–20.

    Article  CAS  PubMed  Google Scholar 

  61. Bauer ME, Fuente M. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016;pii:S0047-6374(16)30001-X.

    Google Scholar 

  62. Derhovanessian E, Larbi A, Pawelec G. Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol. 2009;21(4):440–5.

    Article  CAS  PubMed  Google Scholar 

  63. Turner JE. Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology. 2016;17(3):581–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kohut ML, Senchina DS. Reversing age-associated immunosenescence via exercise. Exerc Immunol Rev. 2004;10:6–41.

    PubMed  Google Scholar 

  65. Simpson RJ et al. Exercise and the aging immune system. Ageing Res Rev. 2012.

    Google Scholar 

  66. Gleeson M et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.

    Article  CAS  PubMed  Google Scholar 

  67. Walsh NP et al. Position statement part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  68. Simpson RJ et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev. 2010;16:40–55.

    PubMed  Google Scholar 

  69. Simpson RJ et al. High-intensity exercise elicits the mobilization of senescent T lymphocytes into the peripheral blood compartment in human subjects. J Appl Physiol. 2007;103(1):396–401.

    Article  CAS  PubMed  Google Scholar 

  70. Simpson RJ. Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exerc Sport Sci Rev. 2011;39(1):23–33.

    Article  PubMed  Google Scholar 

  71. Spielmann G et al. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav Immun. 2011;25(8):1521–9.

    Article  PubMed  Google Scholar 

  72. Kohut ML et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004;22(17-18):2298–306.

    Article  CAS  PubMed  Google Scholar 

  73. Pascoe AR, Fiatarone Singh MA, Edwards KM. The effects of exercise on vaccination responses: a review of chronic and acute exercise interventions in humans. Brain Behav Immun. 2014;39:33–41.

    Article  PubMed  Google Scholar 

  74. Flynn MG et al. Effects of resistance training on selected indexes of immune function in elderly women. J Appl Physiol. 1999;86(6):1905–13.

    CAS  PubMed  Google Scholar 

  75. Kapasi ZF et al. Effects of an exercise intervention on immunologic parameters in frail elderly nursing home residents. J Gerontol A Biol Sci Med Sci. 2003;58(7):636–43.

    Article  PubMed  Google Scholar 

  76. Cherkas LF et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.

    Article  PubMed  Google Scholar 

  77. Silva LC et al. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. Age (Dordr). 2016;38(1):24.

    Article  CAS  Google Scholar 

  78. Baylis D et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int. 2014;95(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Woo J et al. Telomere length is associated with decline in grip strength in older persons aged 65 years and over. Age (Dordr). 2014;36(5):9711.

    Article  Google Scholar 

  80. De Martinis M et al. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80(3):219–27.

    Article  PubMed  CAS  Google Scholar 

  81. Franceschi C et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105.

    Article  CAS  PubMed  Google Scholar 

  82. De Martinis M et al. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579(10):2035–9.

    Article  PubMed  CAS  Google Scholar 

  83. Pedersen M et al. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev. 2003;124(4):495–502.

    Article  CAS  PubMed  Google Scholar 

  84. Baylis D et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Dordr). 2013;35(3):963–71.

    Article  CAS  Google Scholar 

  85. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.

    Article  CAS  PubMed  Google Scholar 

  86. Pedersen BK, Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol. 2009;107(4):1006–14.

    Article  CAS  PubMed  Google Scholar 

  87. Steensberg A et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    Article  CAS  PubMed  Google Scholar 

  88. Galbo H. Hormonal and metabolic adaptation to exercise. New York, NY: Thieme-Stratton Inc; 1983. p. 1–116.

    Google Scholar 

  89. Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunol Rev. 1982;65:133–55.

    Article  CAS  PubMed  Google Scholar 

  90. Bergmann M. Attenuation of catecholamine-induced immunosuppression in whole blood from patients with sepsis. Shock. 1999;12:421–7.

    Article  CAS  PubMed  Google Scholar 

  91. Ross R, Bradshaw AJ. The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol. 2009;5(6):319–25.

    Article  PubMed  Google Scholar 

  92. Mujumdar PP et al. Long-term, progressive, aerobic training increases adiponectin in middle-aged, overweight, untrained males and females. Scand J Clin Lab Invest. 2011;71:101–7.

    Article  CAS  PubMed  Google Scholar 

  93. Colbert LH et al. Physical activity, exercise, and inflammatory markers in older adults: findings from the health, aging and body composition study. J Am Geriatr Soc. 2004;52(7):1098–104.

    Article  PubMed  Google Scholar 

  94. Kullo IJ, Khaleghi M, Hensrud DD. Markers of inflammation are inversely associated with VO2 max in asymptomatic men. J Appl Physiol (1985). 2007;102(4):1374–9.

    Article  CAS  Google Scholar 

  95. Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulating low-grade inflammation in the elderly. Scand J Med Sci Sports. 2003;13(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  96. Heaney JL et al. Serum free light chains are reduced in endurance trained older adults: Evidence that exercise training may reduce basal inflammation in older adults. Exp Gerontol. 2016;77:69–75.

    Article  CAS  PubMed  Google Scholar 

  97. Nicklas BJ et al. Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J Am Geriatr Soc. 2008;56(11):2045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nunes PR et al. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age (Dordr). 2016;38(2):40.

    Article  Google Scholar 

  99. Church TS et al. Exercise without weight loss does not reduce C-reactive protein: the INFLAME study. Med Sci Sports Exerc. 2010;42(4):708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huffman KM et al. Response of high-sensitivity C-reactive protein to exercise training in an at-risk population. Am Heart J. 2006;152(4):793–800.

    Article  CAS  PubMed  Google Scholar 

  101. Kruger K et al. Exercise affects tissue lymphocyte apoptosis via redox-sensitive and Fas-dependent signaling pathways. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1518–27.

    Article  CAS  PubMed  Google Scholar 

  102. Kruger K, Mooren FC. T cell homing and exercise. Exerc Immunol Rev. 2007;13:37–54.

    CAS  PubMed  Google Scholar 

  103. Aspinall R, Mitchell W. Reversal of age-associated thymic atrophy: treatments, delivery, and side effects. Exp Gerontol. 2008;43(7):700–5.

    Article  CAS  PubMed  Google Scholar 

  104. Haugen F et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am J Physiol Cell Physiol. 2010;298(4):C807–16.

    Article  CAS  PubMed  Google Scholar 

  105. Prieto-Hinojosa A et al. Reduced thymic output in elite athletes. Brain Behav Immun. 2014;39:75–9.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang D et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Radom-Aizik S et al. Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease. Brain Behav Immun. 2014;39:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Radom-Aizik S et al. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985). 2013;114(5):628–36.

    Article  CAS  Google Scholar 

  109. Radom-Aizik S et al. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5(1):32–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Radom-Aizik S et al. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol. 2008;104(1):236–43.

    Article  CAS  PubMed  Google Scholar 

  111. Abbasi A et al. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun. 2014;39:130–41.

    Article  CAS  PubMed  Google Scholar 

  112. Glass OK et al. Effect of aerobic training on the host systemic milieu in patients with solid tumours: an exploratory correlative study. Br J Cancer. 2015;112(5):825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016;2016:7239639.

    Article  PubMed  Google Scholar 

  114. Pawelec G. Hallmarks of human "immunosenescence": adaptation or dysregulation? Immun Ageing. 2012;9(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pawelec G, Ferguson FG, Wikby A. The SENIEUR protocol after 16 years. Mech Ageing Dev. 2001;122(2):132–4.

    Article  CAS  PubMed  Google Scholar 

  116. Spielmann G et al. The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans. Brain Behav Immun. 2014;39:142–51.

    Article  CAS  PubMed  Google Scholar 

  117. Bartlett DB et al. The age-related increase in low-grade systemic inflammation (Inflammaging) is not driven by cytomegalovirus infection. Aging Cell. 2012;11(5):912–5.

    Article  CAS  PubMed  Google Scholar 

  118. Goldeck D et al. No strong correlations between serum cytokine levels, CMV serostatus and hand-grip strength in older subjects in the Berlin BASE-II cohort. Biogerontology. 2015;17(1):189–98.

    Article  PubMed  CAS  Google Scholar 

  119. Trautmann L et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12(10):1198–202.

    Article  CAS  PubMed  Google Scholar 

  120. Kraus WE. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347:1483–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Bartlett Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartlett, D.B., Huffman, K.M. (2017). Lifestyle Interventions to Improve Immunesenescence. In: Bueno, V., Lord, J., Jackson, T. (eds) The Ageing Immune System and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-43365-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43365-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43363-9

  • Online ISBN: 978-3-319-43365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics