Skip to main content

Seed Proteomics: An Overview

  • Chapter
  • First Online:
Agricultural Proteomics Volume 1

Abstract

Seed is vital for propagation of spermatophytes in biome and as food source for inhabitants of the earth. Studies on seed proteins provide platform for new avenues to explore molecular networks and pathways governing seed filling, maturation, germination, and seedling formation. Protein expression changes of three genetically different sub-regions of angiosperm seeds are reflected in ordered chain of biological events represented from family differences in different taxas. Different families of angiosperm show divergence of seed protein evolution and thus provide insights into seed structure and function. A gamut of information is available on seed proteomic datasets from approximately 3500 proteins that impinge on protein function in diverse plant families. The functional modularity of seed proteins were compared amongst species that span from dicot to moncot and diploid to polyploid. Transitions of protein complement revealed difference between dormancy and germination towards understanding biological check point at translational level. Goal of this chapter is to critically review data available till date on seed proteomic studies and identify family and cross genera knowledge gaps. The information thus obtained would unravel new components and an unparallel understanding of the molecular processes underlying translational and post-translational variations under different conditions that involves histodifferentiation and organogenesis of the seed.

Kanika Narula and Arunima Sinha are equally contributed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lord JM, Westoby M (2012) Accessory costs of seed production and the evolution of angiosperms. Evolution 66:200–210

    Article  PubMed  Google Scholar 

  2. Dekkers BJ, Pearce S, Van Bolderen-Veldkamp R, Marshall A, Widera P, Gilbert J et al (2013) Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol 163:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Narula K, Pandey A, Gayali S, Chakraborty N, Chakraborty S (2015) Birth of plant proteomics in India: a new horizon. J Proteomics 127:34–43

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan HB, Oehrle NW, Natarajan SS (2009) A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics 9:3174–3188

    Article  CAS  PubMed  Google Scholar 

  6. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647

    Article  PubMed  Google Scholar 

  7. Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41:259–314

    Article  CAS  Google Scholar 

  8. Tebbji F, Nantel A, Matton DP (2010) Transcription profiling of fertilization and early seed development events in a solanaceous species using a 7.7 K cDNA microarray from Solanum chacoense ovules. BMC Plant Biol 10:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J et al (2015) Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol 15:1

    Article  CAS  Google Scholar 

  10. Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400

    Article  CAS  PubMed  Google Scholar 

  11. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  CAS  PubMed  Google Scholar 

  12. Gupta R, Min CW, Kim SW, Wang Y, Agrawal GK, Rakwal R et al (2015) Comparative investigation of seed coats of brown-versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics 15:1706–1716

    Article  CAS  PubMed  Google Scholar 

  13. Miernyk JA, Johnston ML (2013) Proteomic analysis of the testa from developing soybean seeds. J Proteomics 89:265–272

    Article  CAS  PubMed  Google Scholar 

  14. Alekseeva M (1964) [Investigation of salt-soluble proteins of pumpkin seeds (Cucurbita pepo L.) by a column gradient extraction method]. Biokhimiia (Moscow, Russia) 30:60–66

    Google Scholar 

  15. Kriz AL (1989) Characterization of embryo globulins encoded by the maize Glb genes. Biochem Genet 27:239–251

    Article  CAS  PubMed  Google Scholar 

  16. Deng ZY, Gong CY, Wang T (2013) Use of proteomics to understand seed development in rice. Proteomics 13:1784–1800

    Article  CAS  PubMed  Google Scholar 

  17. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J et al (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J et al (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR et al (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K (2006) Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J 48:557–571

    Article  CAS  PubMed  Google Scholar 

  22. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C et al (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen M, Mooney BP, Hajduch M, Joshi T, Zhou M, Xu D et al (2009) System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol 150:27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK et al (2010) Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 152:2078–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arc E, Chibani K, Grappin P, Jullien M, Godin B, Cueff G et al (2012) Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release. J Proteome Res 11:5418–5432

    Article  CAS  PubMed  Google Scholar 

  26. Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L (2014) Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 13:252–268

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen TP, Cueff G, Hegedus DD, Rajjou L, Bentsink L (2015) A role for seed storage proteins in Arabidopsis seed longevity. J Exp Bot 66:6399–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jolivet P, Boulard C, Bellamy A, Valot B, D’andréa S, Zivy M et al (2011) Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol 168:2015–2020

    Google Scholar 

  30. Li W, Gao Y, Xu H, Zhang Y, Wang J (2012) A proteomic analysis of seed development in Brassica campestri L. PLoS ONE 7:e50290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garg H, Li H, Sivasithamparam K, Barbetti MJ (2013) Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of Brassica napus infected with Sclerotinia sclerotiorum. PLoS ONE 8:e65205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubala S, Garnczarska M, Wojtyla L, Clippe A, Kosmala A, Zmienko A et al (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  33. Yin X, He D, Gupta R, Yang P (2015) Physiological and proteomic analyses on artificially aged Brassica napus seed. Front Plant Sci 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lorenz C, Rolletschek H, Sunderhaus S, Braun HP (2014) Brassica napus seed endosperm—metabolism and signaling in a dead end tissue. J Proteomics 108:382–426

    Article  CAS  PubMed  Google Scholar 

  35. Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J et al (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Liu YJ, Yang MF, Shen SH (2009) A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J Integr Plant Biol 51:850–857

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Yang Z, Yang M, Shen S (2011) The differential proteome of endosperm and embryo from mature seed of Jatropha curcas. Plant Sci 181:660–666

    Article  CAS  PubMed  Google Scholar 

  38. Liu H, Wang C, Komatsu S, He M, Liu G, Shen S (2013) Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. J Proteomics 91:23–40

    Article  CAS  PubMed  Google Scholar 

  39. Soares EL, Shah M, Soares AA, Costa JH, Carvalho P, Domont GB et al (2014) Proteome analysis of the inner integument from developing Jatropha curcas L. seeds. J Proteome Res 13:3562–3570

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Wang C, Chen F, Shen S (2015) Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J Proteomics 113:403–414

    Article  CAS  PubMed  Google Scholar 

  41. Shah M, Soares EL, Carvalho PC, Soares AA, Domont GB, Nogueira FC et al (2015) Proteomic analysis of the endosperm ontogeny of Jatropha curcas L. seeds. J Proteome Res 14:2557–2568

    Article  CAS  PubMed  Google Scholar 

  42. Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiol 159:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nogueira FC, Palmisano G, Schwammle V, Campos FA, Larsen MR, Domont GB et al (2012) Performance of isobaric and isotopic labeling in quantitative plant proteomics. J Proteome Res 11:3046–3052

    Article  CAS  PubMed  Google Scholar 

  45. Nogueira FC, Palmisano G, Soares EL, Shah M, Soares AA, Roepstorff P et al (2012) Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. J Proteomics 75:1933–1939

    Article  CAS  PubMed  Google Scholar 

  46. Nogueira FC, Palmisano G, Schwammle V, Soares EL, Soares AA, Roepstorff P et al (2013) Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.). J Proteome Res 12:5012–5024

    Article  CAS  PubMed  Google Scholar 

  47. Puumalainen TJ, Puustinen A, Poikonen S, Turjanmaa K, Palosuo T, Vaali K (2015) Proteomic identification of allergenic seed proteins, napin and cruciferin, from cold-pressed rapeseed oils. Food Chem 175:381–385

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez S, Roy Choudhury S, Sivagnanam K, Hicks LM, Pandey S (2015) Quantitative proteomics analysis of Camelina sativa seeds overexpressing the AGG3 gene to identify the proteomic basis of increased yield and stress tolerance. J Proteome Res 14:2606–2616

    Article  CAS  PubMed  Google Scholar 

  49. Hummel M, Wigger T, Brockmeyer J (2015) Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics: a consensus set of isoforms of Sin a 1. J Proteome Res 14:1547–1556

    Article  CAS  PubMed  Google Scholar 

  50. Senescence L, Grabau LJ, Blevins G, Minor C (1986) P nutrition during seed development. Plant Physiol 82:1008–1012

    Article  Google Scholar 

  51. Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Natarajan SS, Xu C, Bae H, Caperna TJ, Garrett WM (2006) Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis. J Agric Food Chem 54:3114–3120

    Article  CAS  PubMed  Google Scholar 

  53. Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Mátel LU, Salaj TZ et al (2009) Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. J Proteome Res 8:2915–2922

    Article  CAS  PubMed  Google Scholar 

  54. Natarajan SS, Krishnan HB, Lakshman S, Garrett WM (2009) An efficient extraction method to enhance analysis of low abundant proteins from soybean seed. Anal Biochem 394:259–268

    Article  CAS  PubMed  Google Scholar 

  55. Brandão A, Barbosa H, Arruda M (2010) Image analysis of two-dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. J Proteomics 73:1433–1440

    Article  PubMed  CAS  Google Scholar 

  56. Kim HT, Choi U-K, Ryu HS, Lee SJ, Kwon O-S (2011) Mobilization of storage proteins in soybean seed (Glycine max L.) during germination and seedling growth. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1814:1178–1187

    Google Scholar 

  57. Wang WQ, Moller IM, Song SQ (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77:68–86

    Article  CAS  PubMed  Google Scholar 

  58. Gomes LS, Senna R, Sandim V, Silva-Neto MRA, Perales JE, Zingali RB et al (2014) Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis. J Agric Food Chem 62:1283–1293

    Article  CAS  PubMed  Google Scholar 

  59. Han C, Yin X, He D, Yang P (2013) Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS ONE 8:e56947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Zenezini Chiozzi R et al (2014) Protein profile of mature soybean seeds and prepared soybean milk. J Agric Food Chem 62:9893–9899

    Article  CAS  PubMed  Google Scholar 

  61. Mataveli LR, Arruda MA (2014) Expanding resolution of metalloprotein separations from soybean seeds using 2D-HPLC-ICP-MS and SDS-PAGE as a third dimension. J Proteomics 104:94–103

    Article  CAS  PubMed  Google Scholar 

  62. Smith-Hammond CL, Swatek KN, Johnston ML, Thelen JJ, Miernyk JA (2014) Initial description of the developing soybean seed protein Lys-N(epsilon)-acetylome. J Proteomics 96:56–66

    Article  CAS  PubMed  Google Scholar 

  63. Komatsu S, Makino T, Yasue H (2013) Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS ONE 8:e65301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamal AHM, Rashid H, Sakata K, Komatsu S (2015) Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress. J Proteomics 112:1–13

    Article  CAS  PubMed  Google Scholar 

  65. Yin Y, Yang R, Gu Z (2014) Organ-specific proteomic analysis of NaCl-stressed germinating soybeans. J Agric Food Chem 62:7233–7244

    Article  CAS  PubMed  Google Scholar 

  66. Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi J-M et al (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566

    Article  CAS  PubMed  Google Scholar 

  68. Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P et al (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C et al (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179

    Article  CAS  PubMed  Google Scholar 

  70. Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J Exp Bot 64:4559–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dam S, Laursen BS, Ørnfelt JH, Jochimsen B, Stærfeldt HH, Friis C et al (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 149:1325–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nautrup-Pedersen G, Dam S, Laursen BS, Siegumfeldt AL, Nielsen K, Goffard N et al (2010) Proteome analysis of pod and seed development in the model legume Lotus japonicus. J Proteome Res 9:5715–5726

    Article  CAS  PubMed  Google Scholar 

  73. Ino Y, Ishikawa A, Nomura A, Kajiwara H, Harada K, Hirano H (2014) Phosphoproteome analysis of Lotus japonicus seeds. Proteomics 14:116–120

    Article  CAS  PubMed  Google Scholar 

  74. Moro CF, Fukao Y, Shibato J, Rakwal R, Timperio AM, Zolla L et al (2015) Unraveling the seed endosperm proteome of the lotus (Nelumbo nucifera Gaertn.) utilizing 1DE and 2DE separation in conjunction with tandem mass spectrometry. Proteomics 15:1717–1735

    Article  CAS  PubMed  Google Scholar 

  75. Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bourgeois M, Jacquin F, Savois V, Sommerer N, Labas V, Henry C et al (2009) Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9:254–271

    Article  CAS  PubMed  Google Scholar 

  77. Barac M, Cabrilo S, Pesic M, Stanojevic S, Zilic S, Macej O et al (2010) Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int J Mol Sci 11:4973–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De La Fuente M, Borrajo A, Bermúdez J, Lores M, Alonso J, López M et al (2011) 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds. J Proteomics 74:262–267

    Article  CAS  Google Scholar 

  79. Ialicicco M, Viscosi V, Arena S, Scaloni A, Trupiano D, Rocco M et al (2012) Lens culinaris Medik. Seed proteome: analysis to identify landrace markers. Plant Sci 197:1–9

    Article  CAS  PubMed  Google Scholar 

  80. Vessal S, Siddique KH, Atkins CA (2012) Comparative proteomic analysis of genotypic variation in germination and early seedling growth of chickpea under suboptimal soil-water conditions. J Proteome Res 11:4289–4307

    Article  CAS  PubMed  Google Scholar 

  81. Kazłowski B, Chen M-R, Chao P-M, Lai C-C, Ko Y-T (2013) Identification and roles of proteins for seed development in mungbean (Vigna radiata L.) seed proteomes. J Agric Food Chem 61:6650–6659

    Article  PubMed  CAS  Google Scholar 

  82. Kottapalli KR, Zabet-Moghaddam M, Rowland D, Faircloth W, Mirzaei M, Haynes PA et al (2013) Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. J Proteome Res 12:5048–5057

    Article  CAS  PubMed  Google Scholar 

  83. White BL, Gokce E, Nepomuceno AI, Muddiman DC, Sanders TH, Davis JP (2013) Comparative proteomic analysis and IgE binding properties of peanut seed and testa (skin). J Agric Food Chem 61:3957–3968

    Article  CAS  PubMed  Google Scholar 

  84. Swathi M, Lokya V, Swaroop V, Mallikarjuna N, Kannan M, Dutta-Gupta A et al (2014) Structural and functional characterization of proteinase inhibitors from seeds of Cajanus cajan (cv. ICP 7118). Plant Physiol Biochem 83:77–87

    Article  CAS  PubMed  Google Scholar 

  85. Catusse J, Strub J-M, Job C, Van Dorsselaer A, Job D (2008) Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci 105:10262–10267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponte LFA, Silva ALCD, Carvalho FEL, Maia JM, Voigt EL, JaG Silveira (2014) Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew. J Plant Physiol 171:1362–1371

    Article  CAS  PubMed  Google Scholar 

  87. Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5:3752–3764

    Article  CAS  PubMed  Google Scholar 

  88. Lee CS, Chien CT, Lin CH, Chiu YY, Yang YS (2006) Protein changes between dormant and dormancy-broken seeds of Prunus campanulata maxim. Proteomics 6:4147–4154

    Article  CAS  PubMed  Google Scholar 

  89. Priyanto AD, Doerksen RJ, Chang CI, Sung WC, Widjanarko SB, Kusnadi J et al (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteomics 128:424–435

    Article  CAS  PubMed  Google Scholar 

  90. Esteve C, D’amato A, Marina ML, García MC, Citterio A, Righetti PG (2012) Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteomics 75:2396–2403

    Google Scholar 

  91. Gazzola D, Vincenzi S, Gastaldon L, Tolin S, Pasini G, Curioni A (2014) The proteins of the grape (Vitis vinifera L.) seed endosperm: fractionation and identification of the major components. Food Chem 155:132–139

    Article  CAS  PubMed  Google Scholar 

  92. Franco OL, Pelegrini PB, Gomes CP, Souza A, Costa FT, Domont G et al (2009) Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiol Biochem 47:1046–1050

    Article  CAS  PubMed  Google Scholar 

  93. Chen Q, Yang L, Ahmad P, Wan X, Hu X (2011) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta 233:583–592

    Article  CAS  PubMed  Google Scholar 

  94. Klubicová KN, Danchenko M, Skultety L, Miernyk JNA, Rashydov NM, Berezhna VV et al (2010) Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. Environ Sci Technol 44:6940–6946

    Article  PubMed  CAS  Google Scholar 

  95. Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Giri AP, Gupta VS (2012) Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development. J Proteome Res 11:6264–6276

    CAS  PubMed  Google Scholar 

  96. Renouard S, Cyrielle C, Lopez T, Lamblin F, Laine E, Hano C (2012) Isolation of nuclear proteins from flax (Linum usitatissimum L.) seed coats for gene expression regulation studies. BMC Res Notes 5:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  PubMed  Google Scholar 

  98. Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW (2009) Proteomic analysis of cytoskeleton-associated RNA binding proteins in developing rice seed. J Proteome Res 8:4641–4653

    Article  CAS  PubMed  Google Scholar 

  100. He D, Han C, Yao J, Shen S, Yang P (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  CAS  PubMed  Google Scholar 

  101. Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T et al (2012) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53:687–698

    Article  CAS  PubMed  Google Scholar 

  102. Wang YD, Wang X, Ngai SM, Wong YS (2013) Comparative proteomics analysis of selenium responses in selenium-enriched rice grains. J Proteome Res 12:808–820

    Article  CAS  PubMed  Google Scholar 

  103. Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65:655–671

    Article  CAS  PubMed  Google Scholar 

  104. Lin Z, Zhang X, Yang X, Li G, Tang S, Wang S et al (2014) Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly. BMC Plant Biol 14:1–17

    Article  Google Scholar 

  105. Qian D, Tian L, Qu L (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 5:14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Komatsu S, Abbasi F, Kobori E, Fujisawa Y, Kato H, Iwasaki Y (2005) Proteomic analysis of rice embryo: An approach for investigating Gα protein-regulated proteins. Proteomics 5:3932–3941

    Article  CAS  PubMed  Google Scholar 

  107. Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587

    Article  CAS  PubMed  Google Scholar 

  108. Wang W, Meng B, Ge X, Song S, Yang Y, Yu X et al (2008) Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 8:4808–4821

    Article  CAS  PubMed  Google Scholar 

  109. Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC et al (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res 8:3598–3605

    Article  CAS  PubMed  Google Scholar 

  110. Xu SB, Yu HT, Yan LF, Wang T (2010) Integrated proteomic and cytological study of rice endosperms at the storage phase. J Proteome Res 9:4906–4918

    Article  CAS  PubMed  Google Scholar 

  111. Yu HT, Xu SB, Zheng CH, Wang T (2012) Comparative proteomic study reveals the involvement of diurnal cycle in cell division, enlargement, and starch accumulation in developing endosperm of Oryza sativa. J Proteome Res 11:359–371

    Article  CAS  PubMed  Google Scholar 

  112. Xu H, Zhang W, Gao Y, Zhao Y, Guo L, Wang J (2012) Proteomic analysis of embryo development in rice (Oryza sativa). Planta 235:687–701

    Article  CAS  PubMed  Google Scholar 

  113. Nallamilli BR, Zhang J, Mujahid H, Malone BM, Bridges SM, Peng Z (2013) Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet 9:e1003322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Han C, He D, Li M, Yang P (2014) In-depth proteomic analysis of rice embryo reveals its important roles in seed germination. Plant Cell Physiol pcu114

    Google Scholar 

  115. Han C, Wang K, Yang P (2014) Gel-based comparative phosphoproteomic analysis on rice embryo during germination. Plant Cell Physiol 55:1376–1394

    Article  CAS  PubMed  Google Scholar 

  116. Han C, Yang P, Sakata K, Komatsu S (2014) Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination. J Proteome Res 13:1766–1782

    Article  CAS  PubMed  Google Scholar 

  117. Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B et al (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10:2359–2368

    Article  CAS  PubMed  Google Scholar 

  118. Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi MF, Martre P et al (2010) Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 10:2901–2910

    Article  CAS  PubMed  Google Scholar 

  119. Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T et al (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882

    Article  CAS  PubMed  Google Scholar 

  120. Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G (2011) Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics 11:371–379

    Article  CAS  PubMed  Google Scholar 

  121. Guo G, Lv D, Yan X, Subburaj S, Ge P, Li X et al (2012) Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol 12:1

    Article  CAS  Google Scholar 

  122. Guo B, Chen Y, Zhang G, Xing J, Hu Z, Feng W et al (2013) Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination. PLoS ONE 8:e65867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S et al (2014) Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics 108:238–257

    Article  CAS  PubMed  Google Scholar 

  124. Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X et al (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genom 15:1029

    Article  CAS  Google Scholar 

  125. Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ et al (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547:151–156

    Article  CAS  PubMed  Google Scholar 

  126. Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    Article  CAS  PubMed  Google Scholar 

  127. Balmer Y, Vensel WH, Dupont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    Article  CAS  PubMed  Google Scholar 

  128. Dupont FM (2008) Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol 8:1

    Article  CAS  Google Scholar 

  129. Merlino M, Bousbata S, Svensson B, Branlard G (2012) Proteomic and genetic analysis of wheat endosperm albumins and globulins using deletion lines of cultivar Chinese Spring. Theor Appl Genet 125:1433–1448

    Article  CAS  PubMed  Google Scholar 

  130. Suliman M, Chateigner-Boutin AL, Francin-Allami M, Partier A, Bouchet B, Salse J et al (2013) Identification of glycosyltransferases involved in cell wall synthesis of wheat endosperm. J Proteomics 78:508–521

    Article  CAS  PubMed  Google Scholar 

  131. Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G (2012) Expression profiling of starchy endosperm metabolic proteins at 21 stages of wheat grain development. J Proteome Res 11:2754–2773

    Article  CAS  PubMed  Google Scholar 

  132. Campo S, Carrascal M, Coca M, Abián J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4:383–396

    Article  CAS  PubMed  Google Scholar 

  133. Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W et al (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 228:1029–1041

    Article  CAS  PubMed  Google Scholar 

  134. Fu Z, Jin X, Ding D, Li Y, Fu Z, Tang J (2011) Proteomic analysis of heterosis during maize seed germination. Proteomics 11:1462–1472

    Article  CAS  PubMed  Google Scholar 

  135. Huang H, Møller IM, Song S-Q (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75:1247–1262

    Article  CAS  PubMed  Google Scholar 

  136. Tnani H, Lopez I, Jouenne T, Vicient CM (2012) Quantitative subproteomic analysis of germinating related changes in the scutellum oil bodies of Zea mays. Plant Sci 191–192:1–7

    Article  PubMed  CAS  Google Scholar 

  137. Walley JW, Shen Z, Sartor R, Wu KJ, Osborn J, Smith LG et al (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci U S A 110:E4808–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Silva-Sanchez C, Chen S, Li J, Chourey PS (2014) A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. Front Plant Sci 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  139. Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S et al (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot 66:3141–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu X, Gong F, Yang L, Hu X, Tai F, Wang W (2014) Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. Front Plant Sci 5:801

    Article  PubMed  Google Scholar 

  141. Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ostergaard O, Melchior S, Roepstorff P, Svensson B (2002) Initial proteome analysis of mature barley seeds and malt. Proteomics 2:733–739

    Article  CAS  PubMed  Google Scholar 

  143. Borén M, Larsson H, Falk A, Jansson C (2004) The barley starch granule proteome—internalized granule polypeptides of the mature endosperm. Plant Sci 166:617–626

    Article  CAS  Google Scholar 

  144. Finnie C, Svensson B (2003) Feasibility study of a tissue-specific approach to barley proteome analysis: aleurone layer, endosperm, embryo and single seeds. J Cereal Sci 38:217–227

    Article  CAS  Google Scholar 

  145. Bak-Jensen KS, Laugesen S, Roepstorff P, Svensson B (2004) Two-dimensional gel electrophoresis pattern (pH 6–11) and identification of water-soluble barley seed and malt proteins by mass spectrometry. Proteomics 4:728–742

    Article  CAS  PubMed  Google Scholar 

  146. Finnie C, Steenholdt T, Noguera OR, Knudsen S, Larsen J, Brinch-Pedersen H et al (2004) Environmental and transgene expression effects on the barley seed proteome. Phytochemistry 65:1619–1627

    Article  CAS  PubMed  Google Scholar 

  147. Ostergaard O, Finnie C, Laugesen S, Roepstorff P, Svennson B (2004) Proteome analysis of barley seeds: identification of major proteins from two-dimensional gels (pI 4–7). Proteomics 4:2437–2447

    Article  CAS  PubMed  Google Scholar 

  148. Alexander RD, Morris PC (2006) A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics 6:1886–1896

    Article  CAS  PubMed  Google Scholar 

  149. Finnie C, Bak-Jensen KS, Laugesen S, Roepstorff P, Svensson B (2006) Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci 170:808–821

    Article  CAS  Google Scholar 

  150. Hynek R, Svensson B, Jensen ON, Barkholt V, Finnie C (2006) Enrichment and identification of integral membrane proteins from barley aleurone layers by reversed-phase chromatography, SDS-PAGE, and LC-MS/MS. J Proteome Res 5:3105–3113

    Article  CAS  PubMed  Google Scholar 

  151. Witzel K, Surabhi GK, Jyothsnakumari G, Sudhakar C, Matros A, Mock HP (2007) Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining. J Proteome Res 6:1325–1333

    Article  CAS  PubMed  Google Scholar 

  152. Laugesen S, Bak-Jensen KS, Hägglund P, Henriksen A, Finnie C, Svensson B et al (2007) Barley peroxidase isozymes: expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int J Mass Spectrom 268:244–253

    Article  CAS  Google Scholar 

  153. Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  CAS  PubMed  Google Scholar 

  154. Eggert K, Pawelzik E (2011) Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). Proteomics 11:972–985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by grants from the Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India (Grant No. BT/PR12919/AGR/02/676/2009, BT/AGR/CG-Phase II/01/2014) and the National Institute of Plant Genome Research, India. K. N. and A. S. are the recipient of pre-doctoral fellowship from Council of Scientific and Industrial Research (CSIR), Govt. of India. T. H. is the recipient of senior research associate fellowship from Council of Scientific and Industrial Research (CSIR), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhra Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narula, K., Sinha, A., Haider, T., Chakraborty, N., Chakraborty, S. (2016). Seed Proteomics: An Overview. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-43275-5_2

Download citation

Publish with us

Policies and ethics