Skip to main content

Indigenous Lactic Acid Bacteria Communities Associated with Spontaneous Malolactic Fermentations in Patagonian Wines: Basic and Applied Aspects

  • Chapter
  • First Online:
Biology and Biotechnology of Patagonian Microorganisms

Abstract

During winemaking, complex microbial interactions take place and microorganisms showing a selective advantage emerge in a given period as the dominant populations. At the beginning, yeasts, responsible for the alcoholic fermentation (AF), consume sugars present in grapes to yield ethanol and carbon dioxide, leading the transformation of must into wine. The tolerance of lactic acid bacteria (LAB) to low pH and high ethanol are the main factors that select their occurrence in winery ecosystems. LAB guide a secondary biological process, the malolactic fermentation (MLF), which produces deacidification of wine, enhancing its microbial stability and modifying the wine aroma profile. When MLF takes place spontaneously, it is carried out by one or more species of indigenous LAB present in grapes and cellars, naturally adapted to the regional peculiarities of wine. Thus, it is highly advisable to study the indigenous microbiota, best adapted to the agro-ecological conditions of a specific wine-producing area, to select the most representative strains with terroir characteristics for their use as starter cultures. In this chapter, we summarize the studies conducted so far on LAB population diversity in some Patagonian wines, as well as the methods and criteria to select potential indigenous malolactic cultures for these wines, including the adaptation to processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae S, Fleet GH, Heards GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    Article  CAS  PubMed  Google Scholar 

  • Bartowsky EJ (2003) Lysozyme and winemaking. Aust NZ Grapegrow Winemak 473a:101–104

    Google Scholar 

  • Bartowsky E (2005) Oenococcus oeni and malolactic fermentation: moving into the molecular arena. Aust J Grape Wine Res 11:174–187

    Article  CAS  Google Scholar 

  • Bartowsky EJ, Henschke PA (2004) The ‘buttery’ attribute of wine diacetyl desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  CAS  PubMed  Google Scholar 

  • Bartowsky EJ, Francis IL, Bellon JR, Henschke PA (2002) Is buttery aroma perception in wines predictable from the diacetyl concentration? Aust J Grape Wine Res 8:180–185

    Article  CAS  Google Scholar 

  • Bastianini A, Granchi L, Guerrini S, Vincenzini M (2000) Fatty acid composition of malolactic Oenococcus oeni strains exposed to pH and ethanol stress. Ital J Food Sci 12:333–342

    CAS  Google Scholar 

  • Bauer R, Dicks LMT (2004) Control of malolactic fermentation in wine. A review. S Afr J Enol Vitic 25:74–88

    CAS  Google Scholar 

  • Belizário JE, Napolitano M (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6:1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Joseph CML, Allen G, Benson AK, Mills DA (2012) Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One 7:e36537

    Article  CAS  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci USA 111:E139–E148

    Article  CAS  PubMed  Google Scholar 

  • Bourdineaud JP, Nehmé B, Tesse S, Lonvaud-Funel A (2003) The fisH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl Environ Microbiol 69:2511–2520

    Article  CAS  Google Scholar 

  • Bravo-Ferrada BM, Hollmann A, Delfederico L, Valdés La Hens D, Caballero A, Semorile L (2013) Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World J Microbiol Biotechnol 29:1537–1549

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ferrada BM, Tymczyszyn EE, Gómez-Zavaglia A, Semorile L (2014) Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains. J Appl Microbiol 116:360–367

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ferrada BM, Gómez-Zavaglia A, Semorile L, Tymczyszyn E (2015a) Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol. Lett Appl Microbiol 60:155–161

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ferrada BM, Gonçalves S, Semorile L, Santos NC, Tymczyszyn EE, Hollmann A (2015b) Study of surface damage on cell envelope assessed by AFM and flow cytometry of Lactobacillus plantarum exposed to ethanol and dehydration. J Appl Microbiol 118:1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ferrada BM, Brizuela N, Gerbino E, Gómez-Zavaglia A, Semorile L, Tymczyszyn EE (2015c) Effect of protective agents and previous acclimation on ethanol resistance of frozen and freeze-dried Lactobacillus plantarum strains. Cryobiology 71:522–528

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ferrada BM, Hollmann A, Brizuela N, Valdés La Hens D, Tymczyszyn EE, Semorile L (2016) Growth and consumption of L-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiol. doi:10.1007/s12223-016-0446-y

    Google Scholar 

  • Brizuela N (2013) Selection of Lactobacillus plantarum and Oenococcu soeni isolates to be used as indigenous starter cultures for malolactic fermentation of Patagonian wines. Graduate Thesis, UNQ

    Google Scholar 

  • Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G (2010) Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Lett Appl Microbiol 50:327–334

    Article  CAS  PubMed  Google Scholar 

  • Capucho I, San Romao MV (1994) Effect of ethanol and fatty acids on malolactic activity of Oenococcus oeni. J Appl Microbiol Biotechnol 42:391–395

    CAS  Google Scholar 

  • Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. Purification, properties and distribution among bacteria. J Biol Chem 258:4907–4910

    CAS  PubMed  Google Scholar 

  • Cecconi D, Milli A, Rinalducci S, Zolla L, Zapparoli G (2009) Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine. Electrophoresis 30:2988–2995

    Article  CAS  PubMed  Google Scholar 

  • Cho GS, Krauss S, Huch M, du Toit M, Franz CM (2011) Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation. J Microbiol Biotechnol 21:1260–1266

    Google Scholar 

  • Chu-Ky S, Tourdot-Marechal R, Marechal PA, Guzzo J (2005) Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717:118–124

    Article  CAS  PubMed  Google Scholar 

  • Cocconcelli PS, Porro D, Galandini S, Senini L (1995) Development of RAPD protocol for typing of strains of lactic acid bacteria and enterococci. Lett Appl Microbiol 1:376–379

    Article  Google Scholar 

  • Cocolin L, Campolongo S, Alessandria V, Dolci P, Rantsiou K (2011) Culture-independent analysis and wine fermentation: an overview of achievements 10 years after first application. Ann Microbiol 61:17–23

    Article  Google Scholar 

  • Coenye T, Vandamme P (2003) Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiology 149:3507–3517

    Article  CAS  PubMed  Google Scholar 

  • Costello MD, Morrison GJ, Lee TH, Flee GH (1983) Numbers and species of lactic acid bacteria in wines during vinification. Food Tech Assoc Aust 35:14–18

    Google Scholar 

  • Crisóstomo B (2007) Caracterización fisicoquímica de mostos de uva de la Región Sur destinados a vinificación. Graduate Thesis, UNCO

    Google Scholar 

  • da Silveira MG, San Romão V, Loureiro-Dias MC, Rombouts FM, Abee T (2002) Flow cytometry assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 68:6087–6093

    Article  CAS  Google Scholar 

  • da Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahllof I, Baillie H, Kjelleberg S (2000) rpoB-Based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Fact 13(suppl 1):S8

    Article  PubMed  PubMed Central  Google Scholar 

  • du Plessis HW, Dicks LM, Pretorius IS, Lambrechts MG, du Toit M (2004) Identification of lactic acid bacteria isolated from South African brandy base wines. Int J Food Microbiol 91:19–29

    Article  PubMed  CAS  Google Scholar 

  • Edwards CG, Haag KM, Collins MD, Hutson R, Huang YC (1998a) Lactobacillus kunkeei sp nv.: a spoilage organism associated with grape juice fermentations. J Appl Microbiol 84:698–702

    Article  CAS  PubMed  Google Scholar 

  • Edwards CG, Haag KM, Collins MD (1998b) Identification of some lactic acid bacteria associated with sluggish/stuck fermentations. Am J Enol Vitic 49:445–448

    Google Scholar 

  • Felis GE, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    CAS  PubMed  Google Scholar 

  • Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavor. Int J Food Microbiol 86:11–22

    Article  CAS  PubMed  Google Scholar 

  • G-Alegría E, López I, Ignacio Ruiz J, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F (2004) High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilization and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230:53–61

    Article  PubMed  CAS  Google Scholar 

  • González-Arenzana L, Santamaría P, López R, Tenorio C, López-Alfaro I (2012) Dynamics of indigenous lactic acid bacteria in wine fermentation from La Rioja (Spain) during three vintages. Environ Microbiol 63:12–19

    Google Scholar 

  • González-Arenzana L, López R, Santamaría P, López-Alfaro I (2013) Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE. Comparison with culture-dependent methods. Appl Microbiol Biotechnol 97:6931–6941

    Article  PubMed  CAS  Google Scholar 

  • Grandvalet C, Assad-García JS, Chu-Ky S, Tollot M, Guzzo J, Gresti J, Tourdot-Maréchal R (2008) Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation. Microbiology 154:2611–2619

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi A, McLean H, Jiranek V (2000) Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacteria Oenococcus oeni. Am J Enol Vitic 51:362–369

    CAS  Google Scholar 

  • Grimaldi A, Bartowsky E, Jiranek V (2005) Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology. J Appl Microbiol 99:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Guzzo J, Delmas F, Pierre F, Jobin MP, Samyn B, van Beeumen J, Cavin JF, Divies C (1997) A small heat shock protein from Leuconostoc oenos induced by multiple stresses and during stationary growth phase. Lett Appl Microbiol 24:393–396

    Article  CAS  PubMed  Google Scholar 

  • Guzzo J, Jobin MP, Delmas F, Fortier LC, Garmyn D, Tourdot-Maréchal R, Lee B, Diviès C (2000) Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int J Food Microbiol 55:27–31

    Article  CAS  PubMed  Google Scholar 

  • Hayman DC, Monk PR (1982) Starter culture preparation for the induction of malolactic fermentation in wine. Food Tech Assoc Aust 34:14–18

    CAS  Google Scholar 

  • Henick-Kling T (1993) Malolactic fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology, 1st edn. Harwood Academic, Chur, Switzerland

    Google Scholar 

  • Klaenhammer TR, Barrangou R, Buck BL, Azcárate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29:393–409

    Article  CAS  PubMed  Google Scholar 

  • Knoll C, Divol B, du Toit M (2008) Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiol 25:983–991

    Article  CAS  PubMed  Google Scholar 

  • Kunkee RE (1967) Control of malolactic fermentation induced by Leuconostoc citrovorum. Am J Enol Vitic 18:71–77

    CAS  Google Scholar 

  • Kunkee RE (1974) Malolactic fermentation and winemaking. Adv Chem Res 137:151–170

    Article  CAS  Google Scholar 

  • Labarre C, Diviès C, Guzzo J (1996) Genetic organization of the mle locus and identification of a mleR-like gene from Leuconostoc oenos. Appl Environ Microbiol 62:4493–4498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leão C, van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48

    Article  PubMed  Google Scholar 

  • Lee SG, Lee KW, Park TH, Park JY, Han NS, Kim JH (2012) Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from Makgeoli, traditional Korean rice wine. J Microbiol Biotechnol 22:516–525

    Article  CAS  PubMed  Google Scholar 

  • Lerm E, Engelbrecht L, du Toit M (2010) Malolactic fermentation: the ABC’s of MLF. S Afr J Enol Vitic 31:186–192

    CAS  Google Scholar 

  • Lerm E, Engelbrecht L, du Toit M (2011) Selection and characterisation of Oenococcus oeni and Lactobacillus plantarum South African wine isolates for use as malolactic fermentation starter cultures. S Afr J Enol Vitic 32:280–295

    CAS  Google Scholar 

  • Liu SQ (2002) Malolactic fermentation in wine: beyond deacidification. J Appl Microbiol 92:598–601

    Article  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331

    Article  CAS  PubMed  Google Scholar 

  • Lopes CA, Rodríguez ME, Sangorrín M, Querol A, Caballero AC (2007) Patagonian wines: the selection of an indigenous yeast starter. J Ind Microbiol Biotechnol 34:539–546

    Article  CAS  PubMed  Google Scholar 

  • López I, López R, Santamaría P, Torres C, Ruiz-Larrea F (2008) Performance of malolactic fermentation by inoculation of selected Lactobacillus plantarum and Oenococcus oeni strains isolated from Rioja red wine. Vitis 47:123–129

    Google Scholar 

  • Maicas S, Gil JV, Pardo I, Ferrer S (1999) Improvement of volatile composition of wines by controlled inoculation of malolactic bacteria. Food Res Int 32:491–496

    Article  CAS  Google Scholar 

  • Maicas S, Pardo I, Ferrer S (2000) The effects of freezing and freeze-drying of Oenococcus oeni upon induction of malolactic fermentation in red wine. Int J Food Sci Technol 35:75–79

    Article  CAS  Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Martineau B, Henick-Kling T (1995) Formation and degradation of diacetyle in wine during alcoholic fermentation with Saccharomyces cerevisiae strain EC 1118 and malolactic fermentation with Leuconostoc oenos strain MCW. Am J Enol Vitic 46:442–448

    CAS  Google Scholar 

  • Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70:5715–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesas JM, Rodríguez MC, Alegre MT (2011) Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Riveira Sacra. Lett Appl Microbiol 52:258–268

    Article  CAS  PubMed  Google Scholar 

  • Miller BJ, Franz CM, Cho GS, du Toit M (2011) Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr Microbiol 62:1682–1688

    Article  CAS  PubMed  Google Scholar 

  • Mills DA, Phister T, Neely E, Johannsen E (2008) Wine fermentation. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, Berlin, pp 162–192

    Chapter  Google Scholar 

  • Moreno-Arribas MV, Torlois S, Joyeux A, Bertrand A, Lonvaud-Funel A (2000) Isolation, properties and behavior of tyramine-producing lactic acid bacteria from wine. J Appl Microbiol 88:584–593

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arribas MV, Polo CM, Jorganes F, Muñoz R (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84:117–123

    Article  CAS  PubMed  Google Scholar 

  • Nault I, Gerbaux V, Larpent JP, Vayssier Y (1995) Influence of pre-culture conditions on the ability of Leuconostoc oenos to conduct malolactic fermentation in wine. Am J Enol Vitic 46:357–362

    CAS  Google Scholar 

  • Nielsen JC, Richelieu M (1999) Control of flavour development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65:740–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osman Y, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 164:173–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Pilone GJ, Kunkee RE (1972) Characterization and energetics of Leuconostoc oenos ML-34. Am J Enol Vitic 23:61–70

    CAS  Google Scholar 

  • Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2006) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  Google Scholar 

  • Ribereau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology, vol 2, 2nd edn, The chemistry of wine stabilization and treatments. Wiley, New York

    Book  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    Article  CAS  PubMed  Google Scholar 

  • Rojo-Bezares B, Sáenz Y, Navarro I, Zarazaga M, Ruiz-Larrea F, Torres C (2007) Co-culture inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol 24:482–491

    Article  CAS  PubMed  Google Scholar 

  • Romano P, Suzzi G, Zironi R, Comi G (1993) Biometric study of acetoin production in Hanseniaspora guilliermondii and Kloekera apiculata. Appl Environ Microbiol 59:1838–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosi I, Fia G, Canuti V (2003) Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni. Aust J Grape Wine Res 9:194–199

    Article  CAS  Google Scholar 

  • Ruiz P, Seseña S, Izquierdo PM, Llanos Palop M (2010) Bacterial biodiversity and dynamics during malolactic fermentation of Tempranillo wines as determined by a culture-independent method (PCR-DGGE). Appl Microbiol Biotechnol 86:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Sánchez A, Rodríguez R, Coton M, Coton E, Herrero M, García LA et al (2010) Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Res Int 43:2101–2107

    Article  CAS  Google Scholar 

  • Schümann C, Michmayr H, Eder R, del Hierro AM, Kulbe K, Mathiensen G, Nguyen TH (2012) Heterologous expression of Oenococcus oeni malolactic enzyme in Lactobacillus plantarum for improved malolactic fermentation. AMB Express 2:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selle K, Klaenhammer TR (2013) Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37:915–935

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Genova F, De Paola M, Giudici P (2010) Characterization and technological properties of Oenococcus oeni strains from wine spontaneous malolactic fermentations: a framework for selection of new starter cultures. J Appl Microbiol 108:285–298

    Article  CAS  PubMed  Google Scholar 

  • Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86

    Article  CAS  PubMed  Google Scholar 

  • Spano G, Beneduce L, de Palma L, Quinto M, Vernile A, Massa S (2006) Characterization of wine Lactobacillus plantarum by PCR-DGGE and RAPD-PCR analysis and identification of Lactobacillus plantarum strains able to degrade arginine. World J Microbiol Biotechnol 22:769–773

    Article  CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacteria modulation of wine aroma and flavor. Aust J Grape Wine Res 11:139–173

    Article  CAS  Google Scholar 

  • Teixeira H, Gonçalves MG, Rozés N, Ramos A, San Romão MV (2002) Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: a response to ethanol stress? Microb Ecol 43:146–153

    Article  CAS  PubMed  Google Scholar 

  • Ugliano M, Genovese A, Moio L (2003) Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starters of Oenococcus oeni. J Agric Food Chem 51:5075–5078

    Article  CAS  Google Scholar 

  • Ulrike E, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene encoding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  Google Scholar 

  • Ultee A, Wacker A, Kunz D, Löwestein R, König H (2013) Microbial succession in spontaneously fermented grape must before, during and after stuck fermentation. S Afr J Enol Vitic 34:68–78

    CAS  Google Scholar 

  • Valdés La Hens D, Bravo-Ferrada BM, Delfederico L, Caballero A, Semorile L (2015) Prevalence of Lactobacillus plantarum and Oenococcus oeni during spontaneous malolactic fermentation in Patagonian red wines revealed by polymerase chain reaction-denaturing gradient gel electrophoresis with two targeted genes. Aust J Grape Wine Res 21:49–56

    Article  CAS  Google Scholar 

  • van Bokhorst-van de Veen H, Abee T, Tempelaars M, Bron PA, Kleerebezem M, Marco ML (2011) Short- and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum. Appl Environ Microbiol 77:5247–5256

    Article  CAS  Google Scholar 

  • van de Gutche M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279

    Article  CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematic. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from Universidad Nacional de Quilmes (Programa Microbiología Molecular Básica y Aplicaciones Biotecnológicas), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), and ANPCyT (PICTO UNQ 2006 N° 36474, PICT SU 2012 N° 2804, PICT 2013 N° 1481). BMBF and NB are fellows of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). LS is a member of the Research Career of CIC-BA; AH and ET are members of the Research Career of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danay Valdés La Hens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

La Hens, D.V. et al. (2016). Indigenous Lactic Acid Bacteria Communities Associated with Spontaneous Malolactic Fermentations in Patagonian Wines: Basic and Applied Aspects. In: Olivera, N., Libkind, D., Donati, E. (eds) Biology and Biotechnology of Patagonian Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-42801-7_14

Download citation

Publish with us

Policies and ethics