Skip to main content

Organogenesis of the Zebrafish Kidney

  • Chapter
  • First Online:
Organogenetic Gene Networks

Abstract

The nephron is the conserved functional unit of vertebrate kidneys and is composed of a glomerular blood filter attached to a segmented tubule. The gene regulatory networks governing nephron formation during embryonic development are poorly understood and are challenging to study in complex kidney types such as the mammalian adult (metanephric) kidney. By contrast, the zebrafish embryonic (pronephric) kidney offers a number of advantages including its linearly arranged, simple two-nephron structure, and ease of genetic manipulation. As the genes involved in nephrogenesis are largely conserved, the zebrafish model can provide valuable insights into the core gene networks involved in mammalian nephron formation, with relevance to birth defects and disease. In this chapter we review the structure and function of the zebrafish pronephric nephron and summarize our current understanding of the gene regulatory networks and signaling pathways that control the formation of glomerular and tubule cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Abed, S., Dollé, P., Metzger, D., Beckett, B., Chambon, P., & Petkovich, M. (2001). The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes & Development, 15(2), 226–240.

    Article  CAS  Google Scholar 

  • Bedell, V. M., Person, A. D., Larson, J. D., et al. (2012). The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development, 139(4), 793–804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingemann, S. C., Konrad, T. A., & Wieser, R. (2009). Zinc finger transcription factor ecotropic viral integration site 1 is induced by all-trans retinoic acid (ATRA) and acts as a dual modulator of the ATRA response. The FEBS Journal, 276(22), 6810–6822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollig, F., Perner, B., Besenbeck, B., et al. (2009). A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development, 136(17), 2883–2892.

    Article  CAS  PubMed  Google Scholar 

  • Boualia, S. K., Gaitan, Y., Tremblay, M., Sharma, R., Cardin, J., Kania, A., et al. (2013). A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Developmental Biology, 382(2), 555–566.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard, M., Souabni, A., Mandler, M., Neubüser, A., & Busslinger, M. (2002). Nephric lineage specification by Pax2 and Pax8. Genes & Development, 16(22), 2958–2970.

    Article  CAS  Google Scholar 

  • Brunskill, E. W., Aronow, B. J., Georgas, K., et al. (2008). Atlas of gene expression in the developing kidney at microanatomic resolution. Developmental Cell, 15(5), 781–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Call, K. M., Glaser, T., Ito, C. Y., et al. (1990). Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell, 60(3), 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C. N., & Wingert, R. A. (2015). Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Developmental Biology, 399(1), 100–116.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H.-T., Kim, M., Valerius, M. T., et al. (2007). Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development, 134(4), 801–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, H.-T., & Kopan, R. (2005). The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney International, 68(5), 1951–1952.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, A. J. (2011). Uncharted waters: Nephrogenesis and renal regeneration in fish and mammals. Pediatric Nephrology, 26(9), 1435–1443.

    Article  PubMed  Google Scholar 

  • de Rouffignac, C. (1972). Physiological role of the loop of Henle in urinary concentration. Kidney International, 2(6), 297–303.

    Article  PubMed  Google Scholar 

  • Diep, C. Q., Peng, Z., Ukah, T. K., Kelly, P. M., Daigle, R. V., & Davidson, A. J. (2015). Development of the zebrafish mesonephros. Genesis, 53(3–4), 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, L., Pietsch, S., Tan, Z., et al. (2015). Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as wilms’ tumor 1 target genes in podocyte differentiation and maintenance. Journal of the American Society of Nephrology.

    Google Scholar 

  • Dressler, G. R. (2006). The cellular basis of kidney development. Annual Review of Cell and Developmental Biology, 22(1), 509–529.

    Article  CAS  PubMed  Google Scholar 

  • Dreyer, S. D., Morello, R., German, M. S., et al. (2000). LMX1B transactivation and expression in nail–patella syndrome. Human Molecular Genetics, 9(7), 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, I. A., Majumdar, A., Hentschel, H., et al. (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development, 125(23), 4655–4667.

    CAS  PubMed  Google Scholar 

  • Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell, 134(6), 921–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui, K., Yang, Q., Cao, Y., et al. (2005). The HNF-1 target Collectrin controls insulin exocytosis by SNARE complex formation. Cell Metabolism, 2(6), 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Fukuyo, Y., Nakamura, T., Bubenshchikova, E., et al. (2014). Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Molecular Medicine Report, 9(2), 457–465.

    CAS  Google Scholar 

  • Gavalas, A., & Krumlauf, R. (2000). Retinoid signalling and hindbrain patterning. Current Opinion in Genetics & Development, 10(4), 380–386.

    Article  CAS  Google Scholar 

  • Gerlach, G. F., & Wingert, R. A. (2014). Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Developmental Biology, 396(2), 183–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessler, M., Poustka, A., Cavenee, W., Neve, R. L., Orkin, S. H., & Bruns, G. A. P. (1990). Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature, 343(6260), 774–778.

    Article  CAS  PubMed  Google Scholar 

  • Glover, J. C., Renaud, J.-S., & Rijli, F. M. (2006). Retinoic acid and hindbrain patterning. Journal of Neurobiology, 66(7), 705–725.

    Article  CAS  PubMed  Google Scholar 

  • Gresh, L., Fischer, E., Reimann, A., et al. (2004). A transcriptional network in polycystic kidney disease. The EMBO Journal, 23(7), 1657–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guggino, W., Oberleithner, H., & Giebisch, G. (1988). The amphibian diluting segment. American Journal of Physiology, 254(5), F615–F627.

    CAS  PubMed  Google Scholar 

  • Guo, G., Morrison, D. J., Licht, J. D., & Quaggin, S. E. (2004). WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. Journal of the American Society of Nephrology, 15(11), 2851–2856.

    Article  CAS  PubMed  Google Scholar 

  • He, B., Ebarasi, L., Zhao, Z., et al. (2014). Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. Journal of the American Society of Nephrology, 25(12), 2764–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heliot, C., Desgrange, A., Buisson, I., et al. (2013). HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development, 140(4), 873–885.

    Article  CAS  PubMed  Google Scholar 

  • Hoyt, P. R., Bartholomew, C., Davis, A. J., et al. (1997). The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mechanisms of Development, 65(1–2), 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura, K., Bubenshchikova, E., Powell, R., et al. (2012). A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS ONE, 7(9), e45286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura, K., Powell, R., Nakamura, T., Kurihara, H., Sakai, T., & Obara, T. (2013). Podocalyxin regulates pronephric glomerular development in zebrafish. Physiological Reports, 1(3).

    Google Scholar 

  • Igarashi, P., Vanden Heuvel, G. B., Payne, J. A., & Forbush, B. (1995). Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter. American Journal of Physiology—Renal Physiology, 269(3), F405–F418.

    CAS  Google Scholar 

  • Jacobson, H. (1981). Functional segmentation of the mammalian nephron. The American Journal of Physiology, 241(3), F203–F218.

    CAS  PubMed  Google Scholar 

  • Kikuchi, R., Kusuhara, H., Hattori, N., et al. (2006). Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1α/β and DNA methylation. Molecular Pharmacology, 70(3), 887–896.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M., & Schulte-Merker, S. (1997). The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development, 124(22), 4457–4466.

    CAS  PubMed  Google Scholar 

  • Kramer-Zucker, A. G., Wiessner, S., Jensen, A. M., & Drummond, I. A. (2005). Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Developmental Biology, 285(2), 316–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreidberg, J. A., Sariola, H., Loring, J. M., et al. (1993). WT-1 is required for early kidney development. Cell, 74(4), 679–691.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy, V. G. (1976). Cytophysiology of corpuscles of Stannius. International Review of Cytology, 46, 177–249.

    Google Scholar 

  • Krupinski, T., & Beitel, G. J. (2009). Unexpected roles of the Na-K-ATPase and other ion transporters in cell junctions and tubulogenesis. Physiology, 24(3), 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Kumano, G., & Smith, W. C. (2002). Revisions to the Xenopus gastrula fate map: Implications for mesoderm induction and patterning. Developmental Dynamics, 225(4), 409–421.

    Article  PubMed  Google Scholar 

  • Lane, M. C., & Sheets, M. D. (2002). Rethinking axial patterning in amphibians. Developmental Dynamics, 225(4), 434–447.

    Article  PubMed  Google Scholar 

  • Li, Y., Cheng, C. N., Verdun, V. A., & Wingert, R. A. (2014). Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Developmental Biology, 386(1), 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Lienkamp, S. S., Liu, K., Karner, C. M., et al. (2012). Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nature Genetics, 44(12), 1382–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Pathak, N., Kramer-Zucker, A., & Drummond, I. A. (2007). Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development, 134(6), 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  • Ma, M., & Jiang, Y.-J. (2007). Jagged2a-Notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genetics, 3(1), e18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar, A., Lun, K., Brand, M., & Drummond, I. A. (2000). Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development, 127(10), 2089–2098.

    CAS  PubMed  Google Scholar 

  • Massa, F., Garbay, S., Bouvier, R., et al. (2013). Hepatocyte nuclear factor 1β controls nephron tubular development. Development, 140(4), 886–896.

    Article  CAS  PubMed  Google Scholar 

  • Mastroianni, N., Fusco, M. D., Zollo, M., et al. (1996). Molecular cloning, expression pattern, and chromosomal localization of the human Na–Cl Thiazide-Sensitive Cotransporter (SLC12A3). Genomics, 35(3), 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. K., de la Torre Canny, S. G., Jang, C.-W., et al. (2011). Pronephric tubulogenesis requires Daam1-Mediated planar cell polarity signaling. Journal of the American Society of Nephrology, 22(9), 1654–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miner, J. H. (2012). The glomerular basement membrane. Experimental Cell Research, 318(9), 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miner, J. H., Morello, R., Andrews, K. L., et al. (2002). Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. The Journal of Clinical Investigation, 109(8), 1065–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morello, R., Zhou, G., Dreyer, S. D., et al. (2001). Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nature Genetics, 27(2), 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Mudumana, S. P., Hentschel, D., Liu, Y., Vasilyev, A., & Drummond, I. A. (2008). odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development, 135(20), 3355–3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins, M. C., Hammerschmidt, M., Kane, D. A., et al. (1996). Genes establishing dorsoventral pattern formation in the zebrafish embryo: The ventral specifying genes. Development, 123(1), 81–93.

    CAS  PubMed  Google Scholar 

  • Naylor, R. W., Przepiorski, A., Ren, Q., Yu, J., & Davidson, A. J. (2013). HNF1β Is Essential for Nephron Segmentation during Nephrogenesis. Journal of the American Society of Nephrology, 24(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Neto, A., Mercader, N., & Gómez-Skarmeta, J. L. (2012). The osr1 and osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of wnt2b to maintain pectoral fin development. Development, 139(2), 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Nichane, M., Van Campenhout, C., Pendeville, H., Voz, M. L., & Bellefroid, E. J. (2006). The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. Gene Expression Patterns, 6(7), 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Nishibori, Y., Katayama, K., Parikka, M., et al. (2011). Glcci1 deficiency leads to proteinuria. Journal of the American Society of Nephrology, 22(11), 2037–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien, L. L., Grimaldi, M., Kostun, Z., Wingert, R. A., Selleck, R., & Davidson, A. J. (2011). Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Developmental Biology, 358(2), 318–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien, L. L., & McMahon, A. P. (2014). Induction and patterning of the metanephric nephron. Seminars in Cell & Developmental Biology, 36, 31–38.

    Article  Google Scholar 

  • Paroly, S. S., Wang, F., Spraggon, L., et al. (2013). Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS ONE, 8(12), e84155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavenstädt, H., Kriz, W., & Kretzler, M. (2003). Cell biology of the glomerular podocyte. Physiological Reviews, 83(1), 253–307.

    Article  PubMed  Google Scholar 

  • Perisic, L., Rodriguez, P. Q., Hultenby, K., et al. (2015). Schip1 Is a novel podocyte foot process protein that mediates actin cytoskeleton rearrangements and forms a complex with Nherf2 and Ezrin. PLoS ONE, 10(3), e0122067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perner, B., Englert, C., & Bollig, F. (2007). The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 309(1), 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Pyati, U. J., Webb, A. E., & Kimelman, D. (2005). Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development, 132(10), 2333–2343.

    Article  CAS  PubMed  Google Scholar 

  • Rascle, A., Suleiman, H., Neumann, T., & Witzgall, R. (2007). Role of transcription factors in podocytes. Nephron Experimental Nephrology, 106(2), e60–e66.

    Article  CAS  PubMed  Google Scholar 

  • Reilly, R. F., & Ellison, D. H. (2000). Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiological Reviews, 80(1), 277–313.

    CAS  PubMed  Google Scholar 

  • Rosselot, C., Spraggon, L., Chia, I., et al. (2010). Non-cell-autonomous retinoid signaling is crucial for renal development. Development, 137(2), 283–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan, G., Steele-Perkins, V., Morris, J. F., Rauscher, F. J., & Dressler, G. R. (1995). Repression of Pax-2 by WT1 during normal kidney development. Development, 121(3), 867–875.

    CAS  PubMed  Google Scholar 

  • Satchell, S. C., & Braet, F. (2009). Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. American Journal of Physiology—Renal Physiology, 296(5), F947–F956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlondorff, D. (1987). The glomerular mesangial cell: an expanding role for a specialized pericyte. The FASEB Journal, 1(4), 272–281.

    CAS  PubMed  Google Scholar 

  • Schulte-Merker, S., Lee, K. J., McMahon, A. P., & Hammerschmidt, M. (1997). The zebrafish organizer requires chordino. Nature, 387(6636), 862–863.

    Article  CAS  PubMed  Google Scholar 

  • Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S-i., & Miyawaki, A. (2013). Visualization of an endogenous retinoic acid gradient across embryonic development. Nature, 496(7445), 363–366.

    Google Scholar 

  • Shmukler, B. E., Kurschat, C. E., Ackermann, G. E., et al. (2005). Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization. American Journal of Physiology—Renal Physiology, 289(4), F835–F849.

    Article  CAS  PubMed  Google Scholar 

  • Simon, D. B., Nelson-Williams, C., Johnson Bia, M., et al. (1996). Gitelman’s variant of Barter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nature Genetics, 12(1), 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Amsterdam, A., Pazour, G. J., Cole, D. G., Miller, M. S., & Hopkins, N. (2004). A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development, 131(16), 4085–4093.

    Article  CAS  PubMed  Google Scholar 

  • Swanhart, L. M., Takahashi, N., Jackson, R. L., et al. (2010). Characterization of an lhx1a transgenic reporter in zebrafish. The International Journal of Developmental Biology, 54(4), 731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena, J. J., Neto, A., de la Calle-Mustienes, E., Bras-Pereira, C., Casares, F., & Gómez-Skarmeta, J. L. (2007). Odd-skipped genes encode repressors that control kidney development. Developmental Biology, 301(2), 518–531.

    Article  CAS  PubMed  Google Scholar 

  • Tomar, R., Mudumana, S. P., Pathak, N., Hukriede, N. A., & Drummond, I. A. (2014). osr1 is required for podocyte development downstream of wt1a. Journal of the American Society of Nephrology, 25(11), 2539–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, K.-D., Wagner, N., Guo, J.-K., et al. (2006). An inducible mouse model for PAX2-Dependent glomerular disease: Insights into a complex pathogenesis. Current Biology, 16(8), 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, K.-D., Wagner, N., & Schedl, A. (2003). The complex life of WT1. Journal of Cell Science, 116(9), 1653–1658.

    Article  CAS  PubMed  Google Scholar 

  • Warga, R. M., & Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development, 126(4), 827–838.

    CAS  PubMed  Google Scholar 

  • White, J. T., Zhang, B., Cerqueira, D. M., Tran, U., & Wessely, O. (2010). Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development, 137(11), 1863–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingert, R. A., & Davidson, A. J. (2008). The zebrafish pronephros: A model to study nephron segmentation. Kidney International, 73(10), 1120–1127.

    Article  CAS  PubMed  Google Scholar 

  • Wingert, R. A., & Davidson, A. J. (2011). Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Developmental Dynamics, 240(8), 2011–2027.

    Article  CAS  PubMed  Google Scholar 

  • Wingert, R. A., Selleck, R., Yu, J., et al. (2007). The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genetics, 3(10), e189.

    Article  PubMed Central  Google Scholar 

  • Yang, Y., Jeanpierre, C., Dressler, G. R., Lacoste, M., Niaudet, P., & Gubler, M.-C. (1999). WT1 and PAX-2 podocyte expression in denys-drash syndrome and isolated diffuse mesangial sclerosis. The American Journal of Pathology, 154(1), 181–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, HH., Naylor, R.W., Davidson, A.J. (2016). Organogenesis of the Zebrafish Kidney. In: Castelli-Gair Hombría, J., Bovolenta, P. (eds) Organogenetic Gene Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42767-6_7

Download citation

Publish with us

Policies and ethics