Skip to main content

Neurobiology of Autism Spectrum Disorders

  • Chapter
  • First Online:
Autism Spectrum Disorders in Adults

Abstract

Autism spectrum disorders (ASDs) are highly inheritable neurodevelopmental syndromes diagnosed primarily by three core behavioral phenotypes: impaired social interaction, atypical communication, and restricted interests and repetitive behaviors. The biggest advancement in our understanding of ASDs has come from genetic linkage studies and identification of copy number variations (CNVs) which increase the probability of developing an ASD. Mouse models have been genetically engineered based on these known genetic mutations and are tested for the presence of the core ASD-related behaviors. These models are valuable for elucidating the underlying neurobiology of ASDs from the signaling pathway to the neuronal circuit level, allowing for the development of potential therapeutic interventions. This chapter discusses the most promising mouse models in parallel with correlated ASD studies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics : on the threshold of a new neurobiology. Nat Rev Genet 9:341–356. doi:10.1038/nrg2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams CD (1982) Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q J Exp Psychol Comp Physiol Psychol 34B:77–98

    Article  Google Scholar 

  • Adams CD, Dickinson A (1981) Instrumental responding following reinforcer devaluation. The Q J Exp Psychol Sect B: Comp Physiol Psychol 33(2):109–121. doi:10.1080/14640748108400816

    Article  Google Scholar 

  • Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Karl D, Gordon JA, Hen R (2013) Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340(6137):1234–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of Autism. Trends Neurosci 31:137–145

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. APA, Washington, D.C

    Book  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  • Andres C (2002) Molecular genetics and animal models in autistic disorder. Brain Res Bull 57(1):109–119. http://www.sciencedirect.com/science/article/B6SYT-451DHNS-G/2/c94b64aad77b24b2df04f2a8205d2445

  • Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein homer. Nature 411(6840):962–965

    Article  CAS  PubMed  Google Scholar 

  • Arbogast T, Ouagazzal A-M, Chevalier C, Kopanitsa M, Afinowi N, Migliavacca E, Cowling BS et al (2016) Reciprocal effects on neurocognitive and metabolic phenotypes in mouse models of 16p11.2 deletion and duplication syndromes. PLoS Genet 12(2):e1005709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, Boeckers TM, Montgomery JM, Garner CC (2012) Autism-associated mutations in ProSAP2 / Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci 32(43):14966–14978. doi:10.1523/JNEUROSCI.2215-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada H, Kawamura Y, Maruyama K, Kume H, Ding R-g, Ji FY, Kanbara N et al (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229(3):891. http://www.sciencedirect.com/science/article/B6WBK-45MH34T-17/2/5d796a838c6bae89c6f2602238ea6dd1

  • Asaka Y, Jugloff DG, Zhang L, Eubanks JH, Fitzsimonds RM (2006) Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis 21(1):217–227

    Article  CAS  PubMed  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262(5133):563–566

    Article  CAS  PubMed  Google Scholar 

  • Badr GG, Witt-Engerstrom I, Hagberg B (1987) Brain stem and spinal cord impairment in Rett syndrome: somatosensory and auditory evoked responses investigations. Brain Dev 9:517–522

    Article  CAS  PubMed  Google Scholar 

  • Bae M, Bissonette GB, Mars WM, Michalopoulos GK, Achim CL, Depireux DA, Powell EM (2010) Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. Exp Neurol 221:129–135

    Article  CAS  PubMed  Google Scholar 

  • Bailus BJ, Pyles B, McAlister MM, O’Geen H, Lockwood SH, Adams AN, Nguyen JTT, Yu A, Berman RF, Segal DJ (2016) Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman syndrome mouse brain. Mol Ther 24(3):548–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballaban-Gil K, Tuchman R (2000) Epilepsy and epileptiform EEG: association with autism and language disorders. Ment Retard Dev Disabil Res Rev 6:300–308

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419. doi:10.1016/S0028-3908(98)00033-1

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci Off J Soc Neurosci 27(31):8161–8165. doi:10.1523/JNEUROSCI.1554-07.2007

    Article  CAS  Google Scholar 

  • Bariselli S, Tzanoulinou S, Glangetas C, Prévost-Solié C, Pucci L, Viguié J, Bezzi P et al (2016) SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci. doi:10.1038/nn.4319

    PubMed  PubMed Central  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  CAS  PubMed  Google Scholar 

  • Belichenko PV, Wright EE, Belichencko NP, Masliah E, Li HH, Mobley WC, Francke U (2009) Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 514(3):240–258

    Article  CAS  PubMed  Google Scholar 

  • Belmonte MK, Cook EH Jr, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener A, Courchesne E et al (2004a) Autism as a disorder of neural information processing: directions for research and targets for therapy[ast]. Mol Psychiatry 9(7):646–663. http://dx.doi.org/10.1038/sj.mp.4001499

  • Belmonte M, Allen G, Beckel-Mitchener L, Boulanger A, Carper R, Webb S (2004b) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24(6):353. http://www.sciencedirect.com/science/article/B6T0V-4313P77-Y/2/5ed98404eb14804e9c1fdb4164eb2193

  • Ben-Ari Y, Khalilov I, Represa A, Gozlan H (2004) Interneurons set the tune of developing networks. Trends Neurosci 27(7):422. http://www.sciencedirect.com/science/article/B6T0V-4CDS2CG-1/2/9dc4d10ba1a1e4467a92a5a567da2097

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489–491

    Article  CAS  PubMed  Google Scholar 

  • Bernardet M, Crusio WE (2006) Fmr1 KO mice as a possible model of autistic features. ScientificWorldJournal 6:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Bey AL, Jiang Y-h (2014) Overview of mouse models of autism spectrum disorders. Curr Protoc Pharmacol 66(5):1–26

    Google Scholar 

  • Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8(10):404. http://www.sciencedirect.com/science/article/B6TCX-3TXT178-B/2/d1eb156d610390256cb10c761b69648a

  • Bishop S, Richler J, Lord C (2006) Association between restricted and repetitive behaviors and nonverbal IQ in children with autism spectrum disorders. Child Neuropsychol 12:247–267

    Article  PubMed  Google Scholar 

  • Bissonette GB, Bae M, Suresh T, Jaffe DE, Powell EM (2010) Astrocyte-mediated HGF/SF supplementation restores GABAergic interneurons and corrects reversal learning deficits in mice. J Neurosci 30(8):2918–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771. http://dx.doi.org/10.1038/376768a0

  • Blatt GJ (2012) The neuropathology of autism. Scientifica 2012:16

    Article  CAS  Google Scholar 

  • Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disorders 31(6):537–543. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/A:1013238809666

  • Bolton PF, Veltman MW, Weisblatt E, Holmes JR, Thomas NS, Youings SA, Thompson RJ et al (2004) Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders. Psychiatr Genet 14(3):131–137

    Article  PubMed  Google Scholar 

  • Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, Zuffardi O (2001) Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 69(2):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21(1):16–19

    Article  CAS  PubMed  Google Scholar 

  • Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16:551–563

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brouwer JR, Mientjes EJ, Bakker CE, Nieuwenhuizen IM, Severijnen LA, Van der Linde HC, Nelson DL, Oostra BA, Willemsen R (2007) Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated Fragile X full mutation. Exp Cell Res 313(2):244–253

    Article  CAS  PubMed  Google Scholar 

  • Burguière E, Monteiro P, Feng G, Graybielb AM (2013) Optogenetic stimulation of lateral orbitofrontostriatal pathway suppresses compulsive behaviors. Science 340(6137):1243–1246. http://science.sciencemag.org/content/340/6137/1243?iss=6137

  • Buxbaum JD, Hof PR (2013) The neuroscience of autism spectrum disorders, 1st edn. Elsevier Inc., Amsterdam

    Google Scholar 

  • Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, Jr Cook EH, Fang Y, Song CY, Vitale R (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7(3):311–316

    Article  CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 32:483–491

    Article  CAS  PubMed  Google Scholar 

  • Calfa G, Percy AK, Pozzo-Miller L (2011) Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med 236:3–19. doi:10.1258/ebm.2010.010261

    Article  CAS  Google Scholar 

  • Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M et al (2006) A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A 103(45):16834–16839. doi:10.1073/pnas.0605296103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58(3):428–432

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autisim. Neuroscientist 9(6):496–507. doi:10.1177/1073858403253552

    Article  PubMed  Google Scholar 

  • Casanova MF, van Kooten IA, Switala AE, Van Engeland H, Heisen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303

    Article  PubMed  Google Scholar 

  • Chadman KK, Yang M, Crawley JN (2009) Criteria for validating mouse models of psychiatric diseases. Am J Med Genet B Neuropsychiatr Genet 150B(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Khare G, Dani VS, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Chao H-t, Zoghbi HY, Rosenmund C (2007) Report MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56:58–65. doi:10.1016/j.neuron.2007.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H-t, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468(7321):263–269. doi:10.1038/nature09582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35(2):219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Jiao Y, Herskovitz EH (2011) Structural MRI in autism spectrum disorder. Pediatr Res 69(5 Pt 2):63R–68R

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JA, Olga P, Grant Belgard T, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol Mech Dis 10:111–144

    Article  CAS  Google Scholar 

  • Chiu C-S, Brickley S, Jensen K, Southwell A, McKinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25(12):3234–3245. doi:10.1523/jneurosci.3364-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Chugani DC (2004) Serotonin in autism and pediatric epilepsies. Ment Retard Dev Disabil Res Rev 10(2):112–116

    Article  PubMed  Google Scholar 

  • Chung L, Bey AL, Jiang YH (2012) Synaptic plasticity in mouse models of autism spectrum disorders. Korean J Physiol Pharmacol 16:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton-Smith J, Laan L (2003) Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet 40(2):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JLR (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8(8):1059. http://dx.doi.org/10.1038/nn1499

  • Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, Sweatt JD, Zoghbi HY (2004) Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 13(21):2679–2689. doi:10.1093/hmg/ddh282

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2003) Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Eur J Neurosci 18(5):1286–1294

    Article  PubMed  Google Scholar 

  • Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2–3):153–170

    Article  PubMed  Google Scholar 

  • Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380:138–145

    Article  CAS  PubMed  Google Scholar 

  • Cristo G (2007) Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin Genet 72(1):1–8. http://dx.doi.org/10.1111/j.1399-0004.2007.00822.x

  • Cruz-Martin A, Crespo M, Portera-Cailliau C (2010) Delayed stabilization of dendritic spines in Fragile X mice. J Neurosci 30:7793–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curia G, Papouin T, Seguela P, Avoli M (2009) Downregulation of tonic GABAergic inhibition in a mouse model of Fragile X syndrome. Cereb Cortex 19:1515–1520

    Article  PubMed  Google Scholar 

  • D’Hulst C, DeGreest N, Reeve SP, Van Dam D, De Deyen PP, Hassan BA, Kooy RF (2006) Decreased expression of the GABAA receptor in Fragile X syndrome. Brain Res 1121(1):238–245

    Article  PubMed  CAS  Google Scholar 

  • D’Hulst C, Heulens I, Brouwer JR, Willemsen R, DeGreest N, Reeve SP, De Deyen PP, Hassan BA, Kooy RF (2009) Expression of the GABAergic system in animal models for Fragile X syndrome and Fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res 1253:176–183

    Article  PubMed  CAS  Google Scholar 

  • Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 102(35):12560–12565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson G, Toth K, Abbott R, Osterling J, Munson J, Estes A, Liaw J (2004) Early social attention impairments in autism: social orienting, joint attention, and attention to distress. Dev Psychol 40(2):271–283

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 15(Supp 3):S237–S240

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW (1998) Mice lacking the beta 3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of angelman syndrome. J Neurosci 18(20):8505–8514. http://www.jneurosci.org/cgi/content/abstract/18/20/8505

  • DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207–220

    Article  CAS  PubMed  Google Scholar 

  • DeLorey TM, Sahbaie P, Hashemi E, Li WW, Salehi A, Clark DJ (2011) Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3. Behav Brain Res 216:36–45

    Article  CAS  PubMed  Google Scholar 

  • Depino AM, Tsetsenis T, Gross C (2008) GABA homeostasis contributes to the developmental programming of anxiety-related behavior. Brain Res 1210:189–199

    Article  CAS  PubMed  Google Scholar 

  • Derecki NC, Cronk JC, Lu Z, Xu E, Abbot SBG, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Anzaldúa A, Joober R, Rivière J-B, Dion Y, Lespérance P, Chouinard S, Richer F, Rouleau GA (2004) Association between 7q31 markers and Tourette syndrome. Am J Med Genet A 127A(1):17–20. http://dx.doi.org/10.1002/ajmg.a.20631

  • Dichter GS (2012) Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin Neurosci 14(3):319–351

    PubMed  PubMed Central  Google Scholar 

  • Dichter GS, Damiano CA, Allen JA (2012) Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 4(19):1–43

    Google Scholar 

  • DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26(26):6897–6906. doi:10.1523/jneurosci.1712-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A (1985) Actions and habits: the development of behavioral autonomy. Philos Trans R Soc B Biol Sci 308(1135):67–78

    Article  Google Scholar 

  • Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Dolen G, Bear MF (2008) Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of Fragile X syndrome. J Physiol 586(6):1503–1508

    Article  CAS  PubMed  Google Scholar 

  • Dolen G, Emily O, Shankaranarayana Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of Fragile X syndrome in mice. Neuron 56(6):955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffney LJ, Zong P, Wei J, Matas E, Cheng J, Qin L, Ma K et al (2015) Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell 11(9):1400–1413

    CAS  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    Article  CAS  PubMed  Google Scholar 

  • Dutch-Belgian Fragile X Consortium, The (1994) Fmr1 knockout mice: a model to study Fragile X mental retardation. Cell 78(1):23–33

    Google Scholar 

  • Duyzend MH, Eichler EE (2015) Genotype-first analysis of the 16p11.2 deletion defines a new type of ‘autism’. Biol Psychiatry 77(9):769–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykens EM, Sutcliffe JS, Levitt P (2004) Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues. Mental Retard Dev Disabil Res Rev 10(4):284–291. http://dx.doi.org/10.1002/mrdd.20042

  • Ellegood J, Crawley JN (2015) Behavioral and neuroanatomical phenotypes in mouse models of autism. Neurotherapeutics 12(3):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellegood J, Nakai N, Nakatani J, Henkelman M, Takumi T, Lerch J (2015) Neuroanatomical phenotypes are consistent with autism-like behavioral phenotypes in the 15q11-13 duplication mouse model. Autism Res 8(5):545–555

    Article  PubMed  Google Scholar 

  • Esch BE, Carr JE, Grow LL (2009) Evaluation of an enhanced stimulus-stimulus pairing procedure to increase early vocalizations of children with autism. J Appl Behav Anal 42(2):225–241. doi:10.1901/jaba.2009.42-225

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52(8):805–810. http://www.sciencedirect.com/science/article/B6T4S-46WV67F-P/2/5fbfed89b3bf4942d1c788d0f12a7e61

  • Favre MR, Barkat TR, Lamendola D, Khazen G, Markram H, Markram K (2013) General developmental health in the VPA-rat model of autism. Front Behav Neurosci 7:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Felix-Ortiz AC, Tye KM (2014) Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci 34(2):586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez E, Rajan N, Bagni C (2013) The FMRP regulon: from targets to disease convergence. Front Neurosci 7:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Fish EW, Krouse MC, Stringfield SJ, DiBerto JF, Elliott Robinson J, Malanga CJ (2013) Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of Fragile X syndrome. PLoS One 8(10):e77896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French CA, Fisher SE (2014) What can mice tell us about Foxp2 function? Curr Opin Neurobiol 28:72–79

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Yamashita Y, Nagamitsu S, Miyamoto K, Jin JJ, Ohmori I, Ohtsuka Y et al (2005) Methyl-CpG binding protein 2 gene (MECP2) variations in Japanese patients with Rett syndrome: pathological mutations and polymorphisms. Brain Dev 27(3):211–217

    Article  PubMed  Google Scholar 

  • Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P, McGill BE et al (2008) Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59(6):947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gdalyahu A, Lazaro M, Penagarikano PGO, Trachtenberg JT, Geschwind DH (2015) The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study. PLoS One 10(5):e0125633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Chase TN, Jr Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Geschwind DH (2008) Autism: many genes, common pathways? Cell 135(3):391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    Article  CAS  PubMed  Google Scholar 

  • Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104(6):1931–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillan CM, Robbins TW, Sahakian BJ, van den Heuvel OA, van Wingen G (2016) The role of habit in compulsivity. Eur Neuropsychopharmacol 26(5):828–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuffrida R, Musumeci S, D’Antoni S, Bonaccorso CM, Giuffrida-Stella AM, Oostra BA, Catania MV (2005) A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of Fragile X syndrome. J Neurosci 25(39):8908–8916

    Article  CAS  PubMed  Google Scholar 

  • Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK (2009) Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 1:172–181. doi:10.1007/s11689-009-9023-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387. doi:10.1146/annurev.neuro.29.051605.112851

    Article  CAS  PubMed  Google Scholar 

  • Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140(5):704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gremel CM, Costa RM (2013a) Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4:2264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gremel CM, Costa RM (2013b) Premotor cortex is critical for goal-directed actions. Front Comput Neurosci 7(110). doi:10.3389/fncom.2013.00110. eCollection 2013.

  • Griffith E, Penningon B, Wehner E, Rogers S (1999) Executive functions in young children with autism. Child Dev 70:817–832

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Hen R (2004) The developmental origins of anxiety. Nat Rev Neurosci 5(7):545–552. http://dx.doi.org/10.1038/nrn1429

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420(6917):812–816

    Article  CAS  PubMed  Google Scholar 

  • Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutknecht L (2001) Full-genome scans with autistic disorder: a review. Behav Genet 31(1):113–123. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/A:1010218227600

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27(3):322–326

    Article  CAS  PubMed  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb SR, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147

    Article  CAS  PubMed  Google Scholar 

  • Guy J, Merusi C, De Sousa D, Selfridge J, Bird A (2012) Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Hum Mol Genet 21(17):3806–3814. doi:10.1093/hmg/dds208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagerman RJ, 3rd Jackson AW, Levitas A, Rimland B, Branden M (1986) An analysis of autism in fifty males with the Fragile X syndrome. Am J Med Genet 23(1–2):359–374

    Article  CAS  PubMed  Google Scholar 

  • Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 1(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson E, Bernier R, Porche K, Jackson FI, Goin-kochel RP, Snyder LG, Snow AV et al (2015) Archival report the cognitive and behavioral phenotype of the 16p11 . 2 deletion in a clinically ascertained population. Biol Psychiatry 77(9):785–793. doi:10.1016/j.biopsych.2014.04.021. Elsevier

  • Hardan AY, Libove RA, Keshavan MS, Melhem NM, Minshew NJ (2010) Cortical thickness in autism. Biol Psychiatry 66(4):320–326. doi:10.1016/j.biopsych.2009.04.024.A

    Article  Google Scholar 

  • Hayrapetyan V, Stephen C, Sukharnikova T, Yu C, Cao X, Jiang Y-H, Yin HH (2014) Region-specific impairments in striatal synaptic transmission and impaired instrumental learning in a mouse model of Angelman syndrome. Eur J Neurosci 39:1018–1025

    Article  PubMed  Google Scholar 

  • He CX, Portera-Cailliau C (2013) The trouble with spines in Fragile X syndrome: density, maturity and plasticity. Neuroscience 251:120–128

    Article  CAS  PubMed  Google Scholar 

  • Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR, Brynczka C et al (2012) Reversal of disease-related pathologies in the Fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med 4(152):152ra128

    Article  PubMed  CAS  Google Scholar 

  • Hertenstein MJ, Verkamp JM, Kerestes AM, Holmes RM (2006) The communicative functions of touch in humans, nonhuman primates, and rats: a review and synthesis of the empirical research. Genet Soc Gen Psychol Monogr 132:5–94

    Article  PubMed  Google Scholar 

  • Heulens I, D’Hulst C, Van Dam D, De Deyen PP, Kooy RF (2012) Pharmacological treatment of Fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav Brain Res 229(1):244–249

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978

    CAS  PubMed  Google Scholar 

  • Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, Wasserman S, Soorya L, Buchsbaum M (2005) Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry 58(3):226–232. http://www.sciencedirect.com/science/article/B6T4S-4G9Y520-3/2/13635c9f4c58be5b630409c7e7ac1e6a

  • Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD et al (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 94(8):4143–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horev G, Ellegood J, Lerch JP, Son Y-e E, Muthuswamy L, Vogel H, Krieger A et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A 108(41):17076–17081. doi:10.1073/pnas.1114042108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1114042108

  • Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N et al (2011) Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481(7380):185–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of Fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746–7750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert SW, Jiang YH (2016) Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience 321:3–23

    Article  CAS  PubMed  Google Scholar 

  • Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL et al (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 28(7):1697–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussman J (2001) Letters to the editor: suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disorders 31(2):247. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/A:1010715619091

  • Hyman SL, Arndt TL, Rodier PM (2005) Environmental agents and autism: once and future associations. Int Rev Res Ment Retard 30:171–194. doi:10.1016/S0074-7750(05)30005-X

    Article  Google Scholar 

  • Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22(3):319–324

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A 89(13):5981–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail MM, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel’farb GL, El-Baz A (2016) Studying autism spectrum disorder with structural and diffusion magnetic resonance imaging: a survey. Front Hum Neurosci 10:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, Amiel J et al (2006) Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet 43(11):843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana NR (2012) Understanding the pathogenesis of angelman syndrome through animal models. Neural Plast 2012:710943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Liu S, Powell CM (2016) Altered striatal synaptic function and abnormal behaviour in Shank3 Exon4-9 deletion mouse model of autism. Autism Res 9(3):350–375

    Article  PubMed  Google Scholar 

  • Jiang YH, Armstrong D, Albrecht U, Atkins JL, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–811

    Article  CAS  PubMed  Google Scholar 

  • Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels JL, Beaudet AL (2010) Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 5(8):e12278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH (2008) Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Hum Mol Genet 17(10):1386–1396

    Article  CAS  PubMed  Google Scholar 

  • Kalanithi PSA, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 102(37):13307–13312. doi:10.1073/pnas.0502624102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkman HO (2012) Potential opposite roles of the extracellular signal-regulated kinase (ERK) pathway in autism spectrum and bipolar disorders. Neurosci Biobehav Rev 36(10):2206–2213

    Article  CAS  PubMed  Google Scholar 

  • Kana RK, Uddin LQ, Kenet T, Chugani D, Muller R-A (2014) Brain connectivity in autism. Front Hum Neurosci 8:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Kash SF, Johnson RS, Tecott LH, Noebels JL, Mayfield RD, Hanahan D, Baekkeskov S (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 94(25):14060–14065. http://www.pnas.org/cgi/content/abstract/94/25/14060

  • Kataoka Y, Kalanithi PSA, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518(3):277–291. doi:10.1002/cne.22206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kates WR, Lanham DC, Singer HS (2005) Frontal white matter reductions in healthy males with complex stereotypies. Pediatr Neurol 32(2):109–112

    Article  PubMed  Google Scholar 

  • Katz DM, Adrian B, Coenraads M, Gray SJ, Menon DU, Philpot BD, Tarquinio DC (2016) Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci 39(2):100–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486. doi:10.1093/cercor/7.6.476

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ, Bear MF (2008) The autistic neuron: troubled translation? Cell 135(3):401–406

    Article  CAS  PubMed  Google Scholar 

  • Kennedy D, Adolphs R (2012) Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia 50(14):3313–3319

    Article  PubMed  PubMed Central  Google Scholar 

  • Keverne EB (1999) GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull 48(5):467. http://www.sciencedirect.com/science/article/B6SYT-3WH6444-2/2/32bb497a58c3412613d294fb46cd095d

  • Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA III et al (2014) Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A 111(12):4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408

    Article  PubMed  Google Scholar 

  • Kim K, Kim P, Go HS, Choi CS, Park JH, Kim HJ, Jeon SJ et al (2013a) Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 124(6):832–843

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chahrour M, Ben-Shachar S, Lim J (2013b) Ube3a/E6AP is involved in a subset of MeCP2 functions. Biochem Biophys Res Commun 437(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • King IF, Yandava CN, Mabb AM, Hsiao JS, Huang HS, Pearson BL, Calabrese JM et al (2013) Topoisomerases facilitate transcription of long genes linked to autism. Nature 501(7465):58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline DD, Ogier M, Kunze DL, Katz DM (2010) Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 30(15):5303–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science (New York, N.Y.) 273(5280):1399–1402. doi:10.1126/science.273.5280.1399

    Article  CAS  Google Scholar 

  • Kooy RF (2003) Of mice and the Fragile X syndrome. Trends Genet 19:148–154

    Article  PubMed  Google Scholar 

  • Kralic JE, Korpi ER, O’Buckley TK, Homanics GE, Morrow AL (2002) Molecular and pharmacological characterization of GABAA receptor alpha 1 subunit knockout mice. J Pharmacol Exp Ther 302(3):1037–1045. http://jpet.aspetjournals.org/cgi/content/abstract/302/3/1037

  • Kravitz A, Tye L, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroisel PM, Petek E, Emberger W, Windpassinger C, Wladika W, Wagner K (2001) Brief clinical report candidate region for gilles de La Tourette syndrome at 7q31. Am J Med Genet 101(3):259–261. http://dx.doi.org/10.1002/1096-8628(20010701)101:3<259::AID-AJMG1374>3.0.CO;2-#

  • Kuffler SW (1960) Excitation and inhibition in single nerve cells. Harvey Lect 54:176–218

    CAS  Google Scholar 

  • Landry O, Al-Taie S (2016) A meta-analysis of the wisconsin card sort task in autism. J Autism Dev Disord 46(4):1220–1235

    Article  PubMed  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, Giuliano F et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10(9):e1004580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leckman JF, Vaccarino FM, Kalanithi PSA, Rothenberger A (2006) Annotation: Tourette syndrome: a relentless drumbeat – driven by misguided brain oscillations. J Child Psychol Psychiatry 47(6):537–550. http://dx.doi.org/10.1111/j.1469-7610.2006.01620.x

  • Lee AS, Andre JM, Pittenger C (2014) Lesions of the dorsomedial striatum delay spatial learning and render cue-based navigation inflexible in a water maze task in mice. Front Behav Neurosci 8:42

    PubMed  PubMed Central  Google Scholar 

  • Lehmkuhl HD, Storch EA, Bodfish JW, Geffken GR (2008) Exposure and response prevention for obsessive compulsive disorder in a 12-year-old with autism. J Autism Dev Disord 38:977–981. doi:10.1007/s10803-007-0457-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh MJ, Nguyen DV, Winarni TI, Schneider A, Chechi T, Polussa J, Doucet P et al (2013) A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with Fragile X syndrome. J Dev Behav Pediatr 34(3):147–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54. doi:10.1016/j.bbr.2013.04.018. Elsevier B.V

  • Levitt P, Campbell DB (2009) The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest 119(4):747–754. doi:10.1172/JCI37934.the

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27(7):400. http://www.sciencedirect.com/science/article/B6T0V-4CJ472R-3/2/725b7cfcf8586bde21f02a7035256c1f file:///C:/Documents and Settings/Gabi/My Documents/DATA/Cre Project/GABAergic development in Hippocampus.doc

  • Lewine JD, Andrews R, Chez M, Patil AA, Devinsky O, Smith M, Kanner A et al (1999) Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 104(3 Pt1):405–418

    Article  CAS  PubMed  Google Scholar 

  • Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flushberg H, Lainhart JE (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 36(7):849–861

    Article  PubMed  Google Scholar 

  • Lo FS, Erzurumlu RS, Powell EM (2016) Insulin-independent GABAA receptor-mediated response in the barrel cortex of mice with impaired met activity. J Neurosci 36(13):3691–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi LM, Baker SA, Zoghbi HY (2015) MECP2 disorders: from the clinic to mice and back. J Clin Invest 125(8):2914–2923

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Hare EB, Hagerman RJ (2014) Modulation of the GABAergic pathway for the treatment of Fragile X syndrome. Neuropsychiatr Dis Treat 10:1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luikenhuis S, Giacometti E, Beard CF, Jaenisch R (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A 101(16):6033–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J et al (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16(7):898–902

    Article  CAS  PubMed  Google Scholar 

  • Mabunga DFN, Gonzales ELT, Kim J-W, Kim KC, Shin CY (2015) Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 24(4):285–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Maillard AM, Ruef A, Pizzagalli F, Migliavacca E, Hippolyte L, Adaszewski S, Dukart J et al (2015) The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol Psychiatry 20(1):140–147

    Article  CAS  PubMed  Google Scholar 

  • Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R (1997) Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11(24):3341–3350. doi:10.1101/gad.11.24.3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME (2015) Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing arc expression. Proc Natl Acad Sci U S A 112(16):5129–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Caizhi W (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807. http://dx.doi.org/10.1038/nrn1519

  • Marsh R, Alexander GM, Packard MG, Zhu H, Wingard JC, Quackenbush G, Peterson BS (2004) Habit learning in Tourette syndrome: a translational neuroscience approach to a developmental psychopathology. Arch Gen Psychiatry 61(12):1259–1268. doi:10.1001/archpsyc.61.12.1259

    Article  PubMed  Google Scholar 

  • Martins GJ, Plachez CC, Powell EM (2007) Loss of embryonic met signaling alters profiles of hippocampal interneurons. Dev Neurosci 29(1–2):143–158. doi:10.1159/000096219

    CAS  PubMed  Google Scholar 

  • Martins GJ, Shahrokh M, Powell EM (2011) Genetic disruption of met signaling impairs GABAergic striatal development and cognition. Neuroscience 10(176):199–209

    Article  CAS  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • McCarthy S, Makarov V, Kirov G, Addington A, McClellan J, Yoon S, Perkins D et al (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 41(11):1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGraw CM, Samaco RC, Zoghbi HY (2011) Adult neural function requires MeCP2. Science 333(6039):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta MV, Gandal MJ, Siegel SJ (2011) mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One 6:e26077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Monteiro P, Yang Z, Kim J-A, Gao X, Zhanyan F, Feng G (2016) Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530:481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F (2014) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalon A, Sidorov M, Ballard RM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L (2012) Chronic pharmacological mGlu5 inhibition corrects Fragile X in adult mice. Neuron 74(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Miles JH (2011) Autism spectrum disorders—a genetics review. Genet Med 13:278–294

    Article  PubMed  Google Scholar 

  • Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16(4):815–823. http://linkinghub.elsevier.com/retrieve/pii/S0896627300801014

  • Mink JW (2003) The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 60(10):1365–1368

    Article  PubMed  Google Scholar 

  • Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23(2):124–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, Wagstaff J (2002) Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis 9(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Möhler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102(1):1–12. http://dx.doi.org/10.1111/j.1471-4159.2007.04454.x

  • Moretti P, Zoghbi HY (2006) MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16(3):276–281

    Article  PubMed  CAS  Google Scholar 

  • Moretti P, Adriaan Bouwknecht J, Teague R, Paylor R, Zoghbi HY (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14(2):205–220

    Article  CAS  PubMed  Google Scholar 

  • Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 26(1):319–327

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky SH, Goldberg MC, Landa RJ, Denckla MB (2000) Evidence for a deficit in procedural learning in children and adolescents with autism: implications for cerebellar contribution. J Int Neuropsychol Soc 6(7):752–759

    Article  CAS  PubMed  Google Scholar 

  • Moy SS, Nadler JJ (2008) Advances in behavioral genetics : mouse models of autism. Mol Psychiatry 13:4–26. doi:10.1038/sj.mp.4002082

    Article  CAS  PubMed  Google Scholar 

  • Moy SS, Nadler JJ, Magnuson TR, Crawley JN (2006) Mouse models of autism spectrum disorders: the challenge for behavioral genetics. Am J Med Genet C Semin Med Genet 142C:40–51

    Article  CAS  PubMed  Google Scholar 

  • Moy SS, Nadler JJ, Poe MD, Nonneman RJ, Young NB, Koller BH, Crawley JN, Duncan GE, Bodfish JW (2008) Development of a mouse test for repetitive , restricted behaviors : relevance to autism. Behav Brain Res 188:178–194. doi:10.1016/j.bbr.2007.10.029

    Article  CAS  PubMed  Google Scholar 

  • Mychasiuk R, Richards S, Nakahashi A, Kolb B, Gibb R (2012) Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev Neurosci 34(2–3):268–276

    Article  CAS  PubMed  Google Scholar 

  • Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S et al (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137(7):1235–1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, Comoglio PM (1991) Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6(4):54–501

    Google Scholar 

  • Nemirovsky SI, Córdoba M, Zaiat JJ, Completa SP, Vega PA, González-Morón D, Medina NM et al (2015) Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder. PLoS One 10(2):e0116358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146

    CAS  PubMed  Google Scholar 

  • Noebels JL (2003) The biology of epilepsy genes. Annu Rev Neurosci 26(1):599–625. http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.neuro.26.010302.081210

  • Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM (2007) Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J Neurosci 27(40):10912–10917

    Article  CAS  PubMed  Google Scholar 

  • Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD (2016) Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 166(2):299–313. http://dx.doi.org/10.1016/j.cell.2016.05.033

  • Palmen S, Engeland H, Hof P, Schmitz C (2004) Neuropathological findings in autism. Brain 127:2572–2583

    Article  PubMed  Google Scholar 

  • Pan F, Aldridge GM, Greenough WT, Gan WB (2010) Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of Fragile X syndrome. Proc Natl Acad Sci U S A 107:17768–17773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partyka A, Kłodzińska A, Szewczyk B, Wierońska JM, Chojnacka-Wójcik E, Librowski T, Filipek B, Nowak G, Pilc A (2007) Effects of GABAB receptor ligands in rodent tests of anxiety-like behavior. Pharmacol Rep 59(6):757–762

    CAS  PubMed  Google Scholar 

  • Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñagarikano O, Geschwind DH (2012) What does CNTNAP2 reveal about autism spectrum disorder ? Trends Mol Med 18(3):156–163. doi:10.1016/j.molmed.2012.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI et al (2011) Absence of CNTNAP2 leads to epilepsy , neuronal migration abnormalities , and core autism-related deficits. Cell 147:235–246. doi:10.1016/j.cell.2011.08.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñagarikano O, Lázaro MT, Lu X-h, Gordon A, Dong H, Lam HA, Peles E et al (2015) Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 7(271):271ra8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in Fragile X syndrome. Cell 66(44):817–822

    Article  CAS  PubMed  Google Scholar 

  • Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, Wan V et al (2014) Cerebellar plasticity and motor learning deficits in a copy number variation mouse model of autism. Nat Commun 5:5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher MR, Herrera JA, Buffington SA, Kochukov MY, Merritt JK, Fisher AR, Schanen NC, Costa-Mattioli M, Neul JL (2015) Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. Hum Mol Genet 24(9):2662–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24(4):1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R, Ranscht B (2001) Localization of Caspr2 in myelinated nerves depends on axon – glia interactions and the generation of barriers along the axon. J Neurosci 21(19):7568–7575

    CAS  PubMed  Google Scholar 

  • Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B, Pevny L, Stewart CL et al (2003) Juxtaparanodal clustering of shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 162(6):1149–1160. doi:10.1083/jcb.200305018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polleux F, Lauder JM (2004) Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev 10(4):303–317. http://dx.doi.org/10.1002/mrdd.20044

  • Polsek D, Tomislav J, Cepanec M, Hof PR, Simic G (2011) Recent developmnets in neuropathology of autism spectrum disorders. Transl Neurosci 2(3):256–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G, Bader PL et al (2014) Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell 7(4):1077–1092. doi:10.1016/j.celrep.2014.03.036. The Authors

  • Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30(1):79–89

    Article  CAS  PubMed  Google Scholar 

  • Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003a) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23(2):622–631. http://www.jneurosci.org/cgi/content/abstract/23/2/622

  • Powell EM, Mühlfriedel S, Bolz J, Levitt P (2003b) Differential regulation of thalamic and cortical axonal growth by hepatocyte growth factor/scatter factor. Dev Neurosci 25(2–4):197. http://www.karger.com/DOI/10.1159/000072268

  • Powell WT, Coulson RL, Gonzales ML, Crary FK, Wong SS, Adams S, Ach RA et al (2013) R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A 110(34):13938–13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucilowska XJ, Vithayathil J, Tavares EJ, Kelly C, Karlo JC, Landreth GE (2015) The 16p11 . 2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. J Neurosci 35(7):3190–3200. doi:10.1523/JNEUROSCI.4864-13.2015

    Article  CAS  PubMed  Google Scholar 

  • Purpura DP, Girado M, Grunsdfest H (1957) Selective blockade of excitatory synapses in the cat brain by gamma-aminobutyric acid. Science 125(3259):1200–1202

    Article  CAS  PubMed  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redcay E, Courchesne E (2005) When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychol 58(1):1–9

    Article  Google Scholar 

  • Reiss AL, Abrams MT, Greenlaw R, Freund L, Denckla MB (1995) Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat Med 1(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Robertson HR, Feng G (2011) Transgenic mouse models of childhood onset psychiatric disorders. J Child Psychol Psychiatry 52(4):442–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodenas-Cuadrado P, Ho J, Vernes SC (2014) Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet 22:171–178. doi:10.1038/ejhg.2013.100. Nature Publishing Group

  • Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370:247–261

    Article  CAS  PubMed  Google Scholar 

  • Rogers SJ, Hepburn S, Wehner E (2003) Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J Autism Dev Disord 33:631–642

    Article  PubMed  Google Scholar 

  • Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W, Birnbaum SG, Hu J-H, Worley PF, Gibson JR, Huber KM (2012) Disrupted mGluR5-Homer scaffolds mediate abnormal mGluR5 signaling, circuit function and behavior in a mouse model of Fragile X syndrome. Nat Neurosci 15(3):431–4S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose’Meyer R (2013) A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism 4:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, Su TC (2014) Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158(1):198–212. doi:10.1016/j.cell.2014.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2(5):255–267. http://dx.doi.org/10.1034/j.1601-183X.2003.00037.x

  • Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14:483–492

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AR, Kanellopoulos AK, Bagni C (2014) Learning and behavioral deficits associated with the absence of the Fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem 21:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasson NJ, Turner-brown LM, Holtzclaw TN, Lam KSL, Bodfish JW (2008) Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Res 1(1):31–42. doi:10.1002/aur.4

    Article  PubMed  Google Scholar 

  • Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, O’Connor I et al (2012) SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet 90:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeler C (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373(6516):699–702. http://dx.doi.org/10.1038/373699a0

  • Scott-Van A, Abrahams B, Alvarez-Retuerto A, Sonnenblick L, Rudie J, Ghahremani D, Mumford JA, Poldrack RA, Dapretto M, Geschwind DH (2010) Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci Transl Med 2(56):56ra80. http://stm.sciencemag.org/content/2/56/56ra80

  • Sears L, Vest C, Mohamed S, Bailey J, Ranson BJ, Piven J (1999) An MRI study of the basal ganglia in autism. Prog Neuropsychopharmacol Biol Psychiatry 23(4):613–624

    Article  CAS  PubMed  Google Scholar 

  • Sears L, Mathai ÆG, Casanova MF (2009) Event-related potential study of novelty processing abnormalities in autism. Appl Psychophysiol Biofeedback 34(1):37–51. doi:10.1007/s10484-009-9074-5

    Article  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby L, Zhang C, Sun QQ (2007) Major defects in neocortical GABAergic inhibitory circuits in mice lacking the Fragile X mental retardation protein. Neurosci Lett 412:227–232

    Article  CAS  PubMed  Google Scholar 

  • Sell GL, Margolis SS (2015) From UBE3A to Angelman syndrome: a substrate perspective. Front Neurosci 9:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels JL, Armstrong D, Paylor R, Zoghbi HY (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35(2):243–254

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi Y, Furuichi T (2007) The homer family proteins. Genome Biol 8(2):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 8(6):15

    Article  CAS  Google Scholar 

  • Silva-Santos S, van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA, Distel B, Kushner SA, Elgersma Y (2015) Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest 125(5):2069–2076

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverman JL, Yang M, Lord C, Crawley JN (2010a) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502. doi:10.1038/nrn2851. Nature Publishing Group

  • Silverman JL, Tolu SS, Barkan CL, Crawley JN (2010b) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35(4):976–989

    Article  CAS  PubMed  Google Scholar 

  • Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN (2011) Sociability and motor functions in Shank1 mutant mice. Brain Res 1380:120–137. doi:10.1016/j.brainres.2010.09.026. Elsevier B.V

  • Smith SEP, Zhou Y-D, Zhang G, Jin Z, Stoppel DC, Anderson MP (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3(103):103ra97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith JM, Xu J, Powell EM (2012) Age dependent forebrain structural changes in mice deficient in the autism associated gene met tyrosine kinase. Neuroimage Clin 1(1):66–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X (2007) Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 27(1):77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon M, Smith AC, Frank MJ, Ly S, Carter CS (2011) Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Res 4(2):109–20. doi:10.1002/aur.177.

  • Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R, Sykes NH et al (2009) MET and autism susceptibility: family and case-control studies. Eur J Hum Genet 17:749–758

    Article  CAS  PubMed  Google Scholar 

  • Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R (2005) Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4:420–430

    Article  CAS  PubMed  Google Scholar 

  • Spooren W, Lindemann L, Ghosh A, Santarelli L (2012) Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 33(12):669–684

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28(6):317. http://www.sciencedirect.com/science/article/B6T0V-4FT6HKH-1/2/45157cfc8be5733821116e78249ac1e6

  • Stigler KA, McDonald BC, Anand A, Saykin AJ, McDougle CJ (2011) Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res 1380:146–161. doi:10.1016/j.brainres.2010.11.076. Elsevier B.V

  • Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58

    Article  CAS  PubMed  Google Scholar 

  • Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu X-Q, Vincent JB et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Gudsnuk K, Kuo S-H, Cotrina ML, Rosoklija G, Sonders MS, Sosunov A, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tania M, Ma K, Recent XK, Khan A (2014) Recent Advances in Animal Model Experimentation in Autism Research. Acta Neuropsychiatr 26(5):264–271. doi:10.1017/neu.2013.58

    Article  PubMed  Google Scholar 

  • Tate P, Skarnes W, Bird A (1996) The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature 12(2):205–208

    CAS  Google Scholar 

  • Tecuapetla F, Jin X, Lima S, Costa RM (2016) Complementary but distinct contribution of striatal projection pathways to the initiation and execution of action sequences. Cell (in press)

    Google Scholar 

  • Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ et al (2010) Further evidence for the role of MET in autism susceptibility. Neurosci Res 68:137–141

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Stoppel LJ, Heynen AJ, Lindemann L, Jaeschke G, Mills AA, Bear MF (2015) Contribution of mGluR5 to pathophysiology in a mouse model of human chromosome 16p11.2 microdeletion. Nat Neurosci 18(2):16–19. doi:10.1038/nn.3911

    Article  CAS  Google Scholar 

  • Tick B, Bolton P, Happe F, Rutter M, Rijsdijk F (2016) Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry 57(5):585–595

    Article  PubMed  Google Scholar 

  • Tricomi E, Balleine BW, O’Doherty JP (2009) A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci 29(11):2225–2232. doi:10.1111/j.1460-9568.2009.06796.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M (2009) Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106(6):2029–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchino S, Waga C (2013) SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 35(2):106–110. doi:10.1016/j.braindev.2012.05.013. The Japanese Society of Child Neurology

  • Uddin LQ, Superkar K, Menon V (2013) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci 7:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373(6516):702–705. http://dx.doi.org/10.1038/373702a0

  • Utari A, Chonchaiya W, Rivera SM, Schneider A, Hagerman RJ, Faradz SMH, Ethell IM, Nguyen DV (2010) Side effects of minocycline treatment in patients with fragile X syndrome and exploration of outcome measures. Am J Intellect Dev Disabil 115(5):433–443

    Article  PubMed  PubMed Central  Google Scholar 

  • van Duyne GD (2015) Cre recombinase. Microbiol Spectr 3(1):MDNA3–0014 – 2014

    Google Scholar 

  • Van Eylen, Lien BB, Steyaert J, Evers K, Wagemans J, Noens I (2011) Cognitive flexibility in autism spectrum disorder:explaining the inconsistencies? Res Autism Spectr Disord 5:1390–1401

    Article  Google Scholar 

  • Veenstra-VanderWeele J, Blakely RD (2012) Networking in autism : leveraging genetic , biomarker and model system findings in the search for new treatments. Neuropsychopharmacology 37(1):196–212. doi:10.1038/npp.2011.185. Nature Publishing Group

  • Veltman MW, Craig EE, Bolton PF (2005) Autism spectrum disorders in Prader-Willi and Angelman syndromes: a systematic review. Psychiatr Genet 15(4):243–254

    Article  PubMed  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  PubMed  Google Scholar 

  • Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337–2345. http://www.nejm.org/doi/full/10.1056/NEJMoa0802828#t=abstr

  • Vicidomini C, Ponzoni L, Lim D, Schmeisser MJ, Reim D, Morello N, Orellana D et al (2016) Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. doi:10.1038/mp.2016.30

    PubMed Central  Google Scholar 

  • Vissers ME, Cohen MX, Geurts HM (2012) Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev 36(1):604–625

    Article  PubMed  Google Scholar 

  • Walker G (2008) Constant and progressive time delay procedures for teaching children with autism: a literature review. J Autism Dev Disorders 38(2):261–275. doi:10.1007/s10803-007-0390-4

  • Wallace ML, Burette AC, Weinberg RJ, Philpot BD (2012) Maternal Loss of Ube3a Produces an Excitatory/inhibitory Imbalance through Neuron Type-Specific Synaptic Defects. Neuron 74(5):793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mccoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ et al (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20(15):3093–3108. doi:10.1093/hmg/ddr212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu Q, Bey AL, Lee Y, Jiang Y-h (2014) Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism 5:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ et al (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 10(7):11459

    Article  CAS  Google Scholar 

  • Weeber EJ, Jiang YH, Elgersman Y, Varga AW, Carrasquillo Y, Brown SE, Christian JM et al (2003) Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci 23:2634–2644

    CAS  PubMed  Google Scholar 

  • Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358(7):667–675

    Article  CAS  PubMed  Google Scholar 

  • Williams SCP (2011) New mouse models of autism highlight need for standardized tests. Nat Med 17(11):1324. doi:10.1038/nm1111-1324. Nature Publishing Group

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    Article  CAS  Google Scholar 

  • Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, Hu S, Marshall J, McDermid HE (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40(8):575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won H, Lee H-R, Gee HY, Mah W, Kim J-I, Lee J, Ha S et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261–265

    Article  CAS  PubMed  Google Scholar 

  • Won H, Mah W, Kim E, Maggio N, The Chaim Sheba (2013) Autism spectrum disorder causes , mechanisms , and treatments : focus on neuronal synapses. Front Mol Neurosci 6(August):1–26. doi:10.3389/fnmol.2013.00019

    Google Scholar 

  • Wong CG-T, III Carter SO (2001) The GABAA receptor: subunit-dependent functions and absence seizures. Epilepsy Curr 1(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10:329–332

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Freeman L, Foley G, Crawley JN (2015a) In tribute to Bob Blanchard: divergent behavioral phenotypes of 16p11.2 deletion mice reared in same-genotype versus mixed-genotype cages. Physiol Behav 146(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Lewis FC, Sarvi MS, Foley GM, Crawley JN (2015b) 16p11.2 deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks. Learn Mem 22(12):622–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Mahrt EJ, Lewis F, Foley G, Portmann T, Dolmetsch RE, Portfors CV, Crawley JN (2015c) 16p11.2 deletion syndrome mice display sensory and ultrasonic vocalization deficits during social interactions. Autism Res 8(5):507–521. doi:10.1002/aur.1465

    Article  PubMed  PubMed Central  Google Scholar 

  • Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR, Prakash R, Weinberg RJ, Ehlers MD, Philpot BD (2009) Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci 12(6):777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ (2016) The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry 21(9):1225–31

    Google Scholar 

  • Yi F, Danko T, Botelho SC, Patzke C, Pak CH, Wernig M, Sudhof TC (2016) Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 352(6286):aaf2669. doi:10.1126/science.aaf2669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476. doi:10.1038/nrn1919

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189. doi:10.1111/j.1460-9568.2004.03095.x

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J Neurosci 22(2):505–512

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005b) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22(2):513–523. doi:10.1111/j.1460-9568.2005.04218.x

    Article  PubMed  Google Scholar 

  • Yoo H (2015) Genetics of autism spectrum disorder: current status and possible clinical applications. Exp Neurobiol 24(4):257–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste R (1995) Dendritic spines. Nature 375(6533):682–684. Cambridge, MA: MIT Press

    Google Scholar 

  • Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, Barak B et al (2016) Mice with shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89(1):147–162

    Article  CAS  PubMed  Google Scholar 

  • Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16(3):264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4(3):a009886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela J. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martins, G.J. (2017). Neurobiology of Autism Spectrum Disorders. In: Barahona Corrêa, B., van der Gaag, RJ. (eds) Autism Spectrum Disorders in Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-42713-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42713-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42711-9

  • Online ISBN: 978-3-319-42713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics