Skip to main content

PET and SPECT

  • Chapter
  • First Online:
Small Animal Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

PET and SPECT: Methods and Devices

  • Anger HO. Scintillation camera. Rev Sci Instr. 1958;29:27–33.

    Article  CAS  Google Scholar 

  • Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34(2):151–61.

    Article  PubMed  Google Scholar 

  • Brasse D, Kinahan PE, et al. Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med. 2005;46(5):859–67.

    PubMed  Google Scholar 

  • Casey ME, Nutt R. Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci. 1986;33:460–3.

    Article  Google Scholar 

  • Chen CH, Muzic Jr RF, et al. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med. 1999;40(1):118–30.

    CAS  PubMed  Google Scholar 

  • Chen CL, Wang Y, et al. Toward quantitative small animal pinhole SPECT: assessment of quantitation accuracy prior to image compensations. Mol Imaging Biol. 2009;11(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  • Cherry SR, Shao Y, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997;44:1161–6.

    Article  CAS  Google Scholar 

  • Cherry SR, Sorenson JA, et al. Physics in nuclear medicine. Philadelphia: Saunders; 2003.

    Google Scholar 

  • Chow PL, Rannou FR, et al. Attenuation correction for small animal PET tomographs. Phys Med Biol. 2005;50(8):1837–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung YH, Choi Y, et al. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation. Phys Med Biol. 2004;49(13):2881–90.

    Article  PubMed  Google Scholar 

  • Hoffman EJ, Huang SC, et al. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  • Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.

    Article  CAS  PubMed  Google Scholar 

  • Huisman MC, Reder S, et al. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging. 2007;34(4):532–40.

    Article  PubMed  Google Scholar 

  • Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys. 2005;32(9):2799–804.

    Article  PubMed  Google Scholar 

  • Hwang AB, Franc BL, et al. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53(9):2233–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Judenhofer MS, Catana C, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology. 2007;244(3):807–14.

    Article  PubMed  Google Scholar 

  • Kemp BJ, Hruska CB, et al. NEMA NU 2-2007 performance measurements of the Siemens Inveon preclinical small animal PET system. Phys Med Biol. 2009;54(8):2359–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecomte R, Cadorette J, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci. 1996;43:1952–7.

    Article  Google Scholar 

  • Liang Z, Turkington T, et al. Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in three dimensions. Phys Med Biol. 1992;37:587–603.

    Article  CAS  PubMed  Google Scholar 

  • Meikle SR, Kench P, et al. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50(22):R45–61.

    Article  CAS  PubMed  Google Scholar 

  • Rafecas M, Mosler B, et al. Use of Monte-Carlo based probability matrix for 3D iterative reconstruction of MADPET-II data. IEEE Trans Nucl Sci. 2004;51(5):2597–605.

    Article  Google Scholar 

  • Schafers KP, Reader AJ, et al. Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med. 2005;46(6):996–1004.

    PubMed  Google Scholar 

  • Schmand M, Eriksson L, et al. Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph: HRRT. IEEE Trans Nucl Sci. 1998;45:3000–6.

    Article  Google Scholar 

  • Schramm NU, Ebel G, et al. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50(3):315–20.

    Article  Google Scholar 

  • Seidel J, Vaquero JJ, et al. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci. 2003;50:1347–50.

    Article  Google Scholar 

  • Surti S, Karp JS. Imaging characteristics of a 3-dimensional GSO whole-body PET camera. J Nucl Med. 2004;45(6):1040–9.

    CAS  PubMed  Google Scholar 

  • van der Have F, Vastenhouw B, et al. U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med. 2009;50(4):599–605.

    Article  PubMed  Google Scholar 

  • Vanhove C, Defrise M, et al. Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging. 2009;36(7):1049–63.

    Article  PubMed  Google Scholar 

  • Wirrwar AK, Nikolaus S, et al. TierSPECT: performance of a dedicated small-animal-SPECT camera and first in vivo measurements. Z Med Phys. 2005;15(1):14–22.

    Article  PubMed  Google Scholar 

  • Zeniya T, Watabe H, et al. Use of a compact pixellated gamma camera for small animal pinhole SPECT imaging. Ann Nucl Med. 2006;20(6):409–16.

    Article  PubMed  Google Scholar 

  • Ziegler SI, Pichler BJ, et al. A prototype high resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med. 2001;28(2):136–43.

    Article  CAS  PubMed  Google Scholar 

PET and SPECT Tracers for Molecular Imaging

  • Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.

    Article  CAS  PubMed  Google Scholar 

  • Armbrecht JJ, Buxton DB, Schelbert HR. Validation of C-1 carbon-11 labeled acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal ischemic postischemic and hyperemic canine myocardium. Circulation. 1990;81:1594–605.

    Article  CAS  PubMed  Google Scholar 

  • Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, Haberkorn U, Kopka K, Eder M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Park-Holohan S-J, Cook GJR, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.

    Article  CAS  PubMed  Google Scholar 

  • Boni G, Bellina CR, Grosso M, Lucchi M, Manca G, Ambrogi MC, Volterrani D, Menconi G, Melfi FMA, Gonfiotti A, et al. Gamma probe-guided thoracoscopic surgery of small pulmonary nodules. Tumori. 2000;86:364–6.

    CAS  PubMed  Google Scholar 

  • Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DHS. Imaging proliferation in brain tumors with F-18-FLT PET: comparison with F-18-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  • Dadparvar S, Krishna L, Brady LW, Slizofski WJ, Brown SJ, Chevres A, Micaily B. The role of iodine-131 and thallium-201 imaging and serum thyroglobulin in the management of differentiated thyroid carcinoma. Cancer. 1993;71:3767–73.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Jones AG, Duatti A, Reba RC. Progress using Tc-99m radiopharmaceuticals for measuring high capacity sites and low density sites. Drug Discov Today. 2013;18:984–91.

    Article  CAS  PubMed  Google Scholar 

  • Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals. 2014;7:779–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.

    PubMed  Google Scholar 

  • Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avrill N, et al. Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  • Fonti R, Del Vecchio S, Zannetti A, De Renzo A, Catalano L, Pace L, Rotoli B, Salvatore M. Functional imaging of multidrug resistant phenotype by 99mTc-MIBI scan in patients with multiple myeloma. Cancer Biother Radiopharm. 2004;19:165–70.

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Kosaka N, Kishi H. Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    CAS  PubMed  Google Scholar 

  • Hellwig S, Frings L, Amtage F, Buchert R, Spehl TS, Rijntjes M, Tüscher O, Weiller C, Weber WA, Vach W, et al. 18F-FDG PET is an early predictor of overall survival in suspected atypical parkinsonism. J Nucl Med. 2015;56:1541–6.

    Article  CAS  PubMed  Google Scholar 

  • Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, Zimmerman CN, Barrett JA, Eckelman WC, Pomper MG, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69:6932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980;238:E69–82.

    CAS  PubMed  Google Scholar 

  • Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, Buus S, Keiding S, D’Amore F, Boesen A-M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Google Scholar 

  • Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2005;45:661–7.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, Nagane M. Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery (Hagerstown). 2008;62:493–503.

    Article  Google Scholar 

  • Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, Krohn KA, Griffin TW. Imaging of hypoxia in human tumors with fluorine-18 fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22:199–212.

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Ishiwata K, Yamada S, Kubota R, Sato T, Takahashi J, Ito H, Ido T, Tada M. Dose-responsive effect of radiotherapy on the tumor uptake of L methyl-carbon-11-methionine feasibility for monitoring recurrence of tumor. Nucl Med Biol. 1992;19:27–32.

    CAS  Google Scholar 

  • Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    CAS  PubMed  Google Scholar 

  • Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007;26:241–8.

    Article  CAS  PubMed  Google Scholar 

  • Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.

    CAS  PubMed  Google Scholar 

  • Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427.

    Article  CAS  PubMed  Google Scholar 

  • Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    Article  PubMed  Google Scholar 

  • Sara AC, Kei H, Akihito I, Noriyuki K, Mark T. PET imaging for gene & cell therapy. Curr Gene Ther. 2012;12:20–32.

    Article  Google Scholar 

  • Schelbert HR, Phelps ME, Huang SC, Macdonald NS, Hansen H, Selin C, Kuhl DE. Nitrogen-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981;63:1259–72.

    Article  CAS  PubMed  Google Scholar 

  • Scott GC, Meier DA, Dickinson CZ. Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99-m-pertechnetate and iodine-131-sodium iodide. J Nucl Med. 1995;36:1843–5.

    CAS  PubMed  Google Scholar 

  • Shirasaki Y, Tsushima T, Saika T, Nasu Y, Kumon H. Kidney function after nephrectomy for renal cell carcinoma. Urology. 2004;64:43–7.

    Article  PubMed  Google Scholar 

  • Sun Y, Ma P, Bax JJ, Blom N, Yu Y, Han X, Wang Y, Van der Wall EE. 99mTc-MIBI myocardial perfusion imaging in myocarditis. Nucl Med Commun. 2003;24:779–83.

    CAS  PubMed  Google Scholar 

  • Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, Haldemann A, Mueller-Brand J. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med. 2002;43:610–6.

    CAS  PubMed  Google Scholar 

  • Wiseman GA, Witzig TE. Yttriutm-90 (Y-90) ibritumomab tiuxetan (Zevalin (R)) induces long-term durable responses in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm. 2005;20:185–8.

    Google Scholar 

  • Wüstemann T, Bauder-Wüst U, Schäfer M, Eder M, Benešová M, Leotta K, Kratochwil C, Haberkorn U, Kopka K, Mier W. Design of internalizing PSMA-specific Glu-ureido-based radiotherapeuticals. Theranostics. 2016;6:1085–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics. 2012;2:374–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckier LS, Dohan O, Li Y, Chang CJ, Carrasco N, Dadachova E. Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J Nucl Med. 2004;45:500–7.

    CAS  PubMed  Google Scholar 

Radiotracer

  • Abiraj K, Mansi R, Tamma ML, et al. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J Nucl Med. 2011;52:1970–8.

    Article  CAS  PubMed  Google Scholar 

  • Anderson CJ, Wadas TJ, Wong EH, et al. Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q J Nucl Med Mol Imaging. 2008;52:185–92.

    CAS  PubMed  Google Scholar 

  • Bakker WH, Albert R, Bruns C, et al. [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci. 1991;49:1583–91.

    Article  CAS  PubMed  Google Scholar 

  • Boros E, Ferreira CL, Yapp DT, et al. RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. Nucl Med Biol. 2012;39:785–94.

    Article  CAS  PubMed  Google Scholar 

  • Bouvet V, Wuest M, Wuest F. Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org Biomol Chem. 2011;9:7393–9.

    Article  CAS  PubMed  Google Scholar 

  • Breeman WA, De Jong M, Visser TJ, et al. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30:917–20.

    Article  CAS  PubMed  Google Scholar 

  • Brissette R, Goldstein NI. The use of phage display peptide libraries for basic and translational research. Methods Mol Biol. 2007;383:203–13.

    CAS  PubMed  Google Scholar 

  • Bruus-Jensen K, Poethko T, Schottelius M, et al. Chemoselective hydrazone formation between HYNIC-functionalized peptides and (18)F-fluorinated aldehydes. Nucl Med Biol. 2006;33:173–83.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Park R, Hou Y, et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging. 2004a;31:1081–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Park R, Shahinian AH, et al. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol. 2004b;31:11–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Park R, Tohme M, et al. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem. 2004c;15:41–9.

    Article  PubMed  CAS  Google Scholar 

  • Chighine A, Sechi G, Bradley M. Tools for efficient high-throughput synthesis. Drug Discov Today. 2007;12:459–64.

    Article  CAS  PubMed  Google Scholar 

  • Coenen HH, Mertens J, Maziere B. Radioiodination reactions for pharmaceuticals - compendium for effective synthesis strategies. Dordrecht: Springer; 2006.

    Book  Google Scholar 

  • Decristoforo C, Faintuch-Linkowski B, Rey A, et al. [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nucl Med Biol. 2006;33:945–52.

    Article  CAS  PubMed  Google Scholar 

  • Decristoforo C, Hernandez Gonzalez I, Carlsen J, et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging. 2008;35:1507–15.

    Article  PubMed  Google Scholar 

  • Decristoforo C, Mather SJ. 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution. Nucl Med Biol. 1999a;26:389–96.

    Article  CAS  PubMed  Google Scholar 

  • Decristoforo C, Mather SJ. Technetium-99m somatostatin analogues: effect of labelling methods and peptide sequence. Eur J Nucl Med. 1999b;26:869–76.

    Article  CAS  PubMed  Google Scholar 

  • Deri MA, Zeglis BM, Francesconi LC, et al. PET imaging with (8)(9)Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14.

    Article  CAS  PubMed  Google Scholar 

  • Dumont RA, Deininger F, Haubner R, et al. Novel (64)Cu- and (68)Ga-labeled RGD conjugates show improved PET imaging of alpha(nu)beta(3) integrin expression and facile radiosynthesis. J Nucl Med. 2011;52:1276–84.

    Article  CAS  PubMed  Google Scholar 

  • Eder M, Schafer M, Bauder-Wust U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  • Egli A, Alberto R, Tannahill L, et al. Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med. 1999;40:1913–7.

    CAS  PubMed  Google Scholar 

  • Eisenwiener KP, Prata MI, Buschmann I, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem. 2002;13:530–41.

    Article  CAS  PubMed  Google Scholar 

  • Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 2003;43:218–27.

    Article  CAS  PubMed  Google Scholar 

  • Frindel M, Camus N, Rauscher A, et al. Radiolabeling of HTE1PA: a new monopicolinate cyclam derivative for Cu-64 phenotypic imaging. In vitro and in vivo stability studies in mice. Nucl Med Biol. 2014;41(Suppl):e49–57.

    Article  CAS  PubMed  Google Scholar 

  • Froidevaux S, Eberle AN, Christe M, et al. Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer. 2002;98:930–7.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garayoa E, Blauenstein P, Blanc A, et al. A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging. 2009;36:37–47.

    Article  CAS  PubMed  Google Scholar 

  • Garrison JC, Rold TL, Sieckman GL, et al. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med. 2007;48:1327–37.

    Article  CAS  PubMed  Google Scholar 

  • Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handl HL, Vagner J, Han H, et al. Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets. 2004;8:565–86.

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    Article  CAS  PubMed  Google Scholar 

  • Haubner R, Beer AJ, Wang H, et al. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S86–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci. 2009;14:872–86.

    Article  CAS  Google Scholar 

  • Haubner R, Finsinger D, Kessler H. Stereoisomere Peptid-Bibliotheken und Peptidomimetika zum Design von selektiven Inhibitoren des αvβ3-Integrins für eine neuartige Krebstherapie. Angew Chem Int Ed Engl. 1997;36:1374–89.

    Article  CAS  Google Scholar 

  • Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int. 2014;2014:871609.

    PubMed  PubMed Central  Google Scholar 

  • Haubner R, Wester HJ, Burkhart F, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001a;42:326–36.

    CAS  PubMed  Google Scholar 

  • Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001b;61:1781–5.

    CAS  PubMed  Google Scholar 

  • Hausner SH, Kukis DL, Gagnon MK, et al. Evaluation of [(64)Cu]Cu-DOTA and [(64)Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an alpha(v)beta(6)-specific peptide. Mol Imaging. 2009;8:111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heppeler A, Froidevaux S, Eberle AN, et al. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem. 2000;7:971–94.

    Article  CAS  PubMed  Google Scholar 

  • Holland JP, Divilov V, Bander NH, et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultsch C, Schottelius M, Auernheimer J, et al. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur J Nucl Med Mol Imaging. 2009;36(9):1469–74.

    Article  CAS  PubMed  Google Scholar 

  • Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res. 2002;62:6146–51.

    CAS  PubMed  Google Scholar 

  • Leach AR, Harren J. Structure-based drug discovery. Berlin: Springer; 2007.

    Google Scholar 

  • Liu Z, Li Y, Lozada J, et al. Kit-like 18F-labeling of RGD-19F-arytrifluroborate in high yield and at extraordinarily high specific activity with preliminary in vivo tumor imaging. Nucl Med Biol. 2013;40:841–9.

    Article  CAS  PubMed  Google Scholar 

  • Maina T, Nock B, Nikolopoulou A, et al. [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging. 2002;29:742–53.

    Article  CAS  PubMed  Google Scholar 

  • Maschauer S, Prante O. A series of 2-O-trifluoromethylsulfonyl-D-mannopyranosides as precursors for concomitant 18F-labeling and glycosylation by click chemistry. Carbohydr Res. 2009;344:753–61.

    Article  CAS  PubMed  Google Scholar 

  • McBride WJ, D’Souza CA, Sharkey RM, et al. Improved 18F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug Chem. 2010;21:1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride WJ, Sharkey RM, Karacay H, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8.

    Article  CAS  PubMed  Google Scholar 

  • Meijs WE, Herscheid JD, Haisma HJ, et al. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int J Rad Appl Instrum A. 1992;43:1443–7.

    Article  CAS  PubMed  Google Scholar 

  • Mindt TL, Struthers H, Brans L, et al. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc. 2006;128:15096–7.

    Article  CAS  PubMed  Google Scholar 

  • Nicole P, Lins L, Rouyer-Fessard C, et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem. 2000;275:24003–12.

    Article  CAS  PubMed  Google Scholar 

  • Nock BA, Maina T, Krenning EP, et al. “To serve and protect”: enzyme inhibitors as radiopeptide escorts promote tumor targeting. J Nucl Med. 2014;55:121–7.

    Article  CAS  PubMed  Google Scholar 

  • Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of (6)(8)Ga-TRAP(RGD)(3). Nucl Med Biol. 2013;40:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Okarvi SM. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals. Eur J Nucl Med. 2001;28:929–38.

    Article  CAS  PubMed  Google Scholar 

  • Poethko T, Schottelius M, Thumshirn G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. J Nucl Med. 2004a;45:892–902.

    CAS  PubMed  Google Scholar 

  • Poethko T, Schottelius M, Thumshirn G, et al. Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochim Acta. 2004b;92:317–27.

    Article  CAS  Google Scholar 

  • Prante O, Einsiedel J, Haubner R, et al. 3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. Bioconjug Chem. 2007;18:254–62.

    Article  CAS  PubMed  Google Scholar 

  • Schibli R, La Bella R, Alberto R, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of (99m)Tc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem. 2000;11:345–51.

    Article  CAS  PubMed  Google Scholar 

  • Schirrmacher E, Wangler B, Cypryk M, et al. Synthesis of p-(di-tert-butyl[(18)F]fluorosilyl)benzaldehyde ([(18)F]SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the (18)F-labeling of N-amino-oxy derivatized peptides. Bioconjug Chem. 2007;18:2085–9.

    Article  CAS  PubMed  Google Scholar 

  • Schottelius M, Rau F, Reubi JC, et al. Modulation of pharmacokinetics of radioiodinated sugar-conjugated somatostatin analogues by variation of peptide net charge and carbohydration chemistry. Bioconjug Chem. 2005;16:429–37.

    Article  CAS  PubMed  Google Scholar 

  • Simecek J, Notni J, Kapp TG, et al. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm. 2014;11:1687–95.

    Article  CAS  PubMed  Google Scholar 

  • Smith-Jones PM, Stolz B, Bruns C, et al. Gallium-67/gallium-68-[DFO]-octreotide–a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med. 1994;35:317–25.

    CAS  PubMed  Google Scholar 

  • Sosabowski JK, Matzow T, Foster JM, et al. Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J Nucl Med. 2009;50:2082–9.

    Article  CAS  PubMed  Google Scholar 

  • Thonon D, Kech C, Paris J, et al. New strategy for the preparation of clickable peptides and labeling with 1-(Azidomethyl)-4-[(18)F]-fluorobenzene for PET. Bioconjug Chem. 2009;20:817–23.

    Article  CAS  PubMed  Google Scholar 

  • Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol. 2002;6:399–404.

    Article  CAS  PubMed  Google Scholar 

  • Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol. 2008;12:292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallabhajosula S, Moyer BR, Lister-James J, et al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides. J Nucl Med. 1996;37:1016–22.

    CAS  PubMed  Google Scholar 

  • van de Watering FC, Rijpkema M, Perk L, et al. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int. 2014;2014:203601.

    PubMed  PubMed Central  Google Scholar 

  • Velikyan I, Beyer GJ, Langstrom B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem. 2004;15:554–60.

    Article  CAS  PubMed  Google Scholar 

  • Wan W, Guo N, Pan D, et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med. 2013;54:691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wangler C, Maschauer S, Prante O, et al. Multimerization of cRGD peptides by click chemistry: synthetic strategies, chemical limitations, and influence on biological properties. Chembiochem. 2010;11:2168–81.

    Article  CAS  PubMed  Google Scholar 

  • Wester HJ, Schottelius M. Fluorine-18 labeling of peptides and proteins. In: Schubiger AP, Lehmann L, Friebe M, editors. PET chemistry - the driving force in molecular imaging. Berlin: Springer; 2007.

    Google Scholar 

  • Yu Z, Carlucci G, Ananias HJ, et al. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids. 2013;44:543–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Haubner or Sibylle I. Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Decristoforo, C., Haberkorn, U., Haubner, R., Mier, W., Ziegler, S.I. (2017). PET and SPECT. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics