Skip to main content

Advertisement

Log in

A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Neurotensin (NT) and its high affinity receptor (NTR1) are involved in several neoplastic processes. Thus, NT-based radiopharmaceuticals are potential tracers for targeted diagnosis and therapy of NTR-positive tumours. A new analogue based on NT(8–13), NT-XIX, with the three enzymatic cleavage sites stabilised, was synthesised and tested.

Methods

The synthesis was performed by Boc strategy. Labelling with 99mTc/188Re was performed using the tricarbonyl technique. Metabolic stability was tested in vitro and in vivo. NT-XIX was further characterised in vitro in HT-29 cells and in vivo in nude mice with HT-29 xenografts.

Results

NT-XIX showed much longer half-lives than non-stabilised analogues. Binding to NTR1 was highly specific, although the affinity was lower than that of natural NT. Bound activity rapidly internalised into HT-29 cells and 50% remained trapped after 24 h. In the time-course biodistribution, the highest uptake was found in the tumour at all p.i. times. In vivo uptake was specific, and accumulation of activity in the kidneys was low. Radioactivity clearance from healthy organs was faster than that from the tumour, resulting in improved tumour-to-tissue ratios and good SPECT/CT imaging. Treatment with 188Re-NT-XIX (30 MBq, in three or four fractions) decreased tumour growth by 50% after 3 weeks.

Conclusion

The high in vivo stability and the favourable in vivo behaviour makes NT-XIX an excellent candidate for the imaging and therapy of NTR1-positive tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson CJ, Dehdashti F, Cutler D, Schwarz SW, Laforest R, Bass LA, et al. 64Cu-TETA-Octreotide as PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42:213–21.

    PubMed  CAS  Google Scholar 

  3. Evers BM. Neurotensin and growth in normal and neoplastic tissues. Peptides. 2006;27:2424–33.

    Article  PubMed  CAS  Google Scholar 

  4. Carraway RE, Plona AM. Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides. 2006;27:2445–60.

    Article  PubMed  CAS  Google Scholar 

  5. Carraway RE, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem. 1973;248:6854–61.

    PubMed  CAS  Google Scholar 

  6. Nemeroff CB, Luttinger D, Prange AJJ. Neurotensin: central nervous system effects of a neuropeptide. Trends Neurosc. 1980;3:212–5.

    Article  CAS  Google Scholar 

  7. Kitabgi P. Effects of neurotensin on intestinal smooth muscle: application to the study of structure–activity relationships. Ann NY Acad Sci. 1982;400:37–55.

    Article  PubMed  CAS  Google Scholar 

  8. Vincent JP, Mazella P, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci. 1999;20:302–9.

    Article  PubMed  CAS  Google Scholar 

  9. Mazella J, Zsürger N, Navarro V, Chabry J, Kaghad M, Caput D, et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J Biol Chem. 1998;273:26273–6.

    Article  PubMed  CAS  Google Scholar 

  10. Morinville A, Martin S, Lavallée M, Vincent JP, Beaudet A, Mazella J. Internalization and trafficking of neurotensin via NTS3 receptors in HT29 cells. Int J Biochem Cell Biol. 2004;36:2153–68.

    Article  PubMed  CAS  Google Scholar 

  11. Reubi JC, Waser B, Friess H, Büchler M, Laissue J. Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut. 1998;42:546–50.

    Article  PubMed  CAS  Google Scholar 

  12. Ehlers RA, Kim S, Zhang Y, Ethridge RT, Murrilo C, Hellmich MR, et al. Gut peptide receptor expression in human pancreatic cancers. Ann Surg. 2000;231:838–48.

    Article  PubMed  CAS  Google Scholar 

  13. Souazé F, Dupouy S, Viardot-Foucault V, Bruyneel E, Attaub S, Gespach C, et al. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression. Cancer Res. 2006;66:6243–9.

    Article  PubMed  Google Scholar 

  14. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.

    Article  PubMed  Google Scholar 

  15. American Cancer Society. Breast cancer facts & figures 2005–2006. Atlanta: American Cancer Society Inc.

  16. Kitabgi P, De Nadai F, Rovère C, Bidard JN. Biosynthesis, maturation, release and degradation of neurotensin and neuromedin N. Ann NY Acad Sci. 1992;668:30–42.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-Garayoa E, Blaeuenstein P, Bruehlmeier M, Blanc A, Iterbeke K, Conrath P, et al. Preclinical evaluation of a new, stabilized neurotensin(8–13) pseudopeptide radiolabeled with 99mTc. J Nucl Med. 2002;43:374–83.

    PubMed  CAS  Google Scholar 

  18. Bruehlmeier M, Garcia Garayoa E, Blanc A, Holzer B, Gergely S, Tourwé D, et al. Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding. Nucl Med Biol. 2002;29:321–7.

    Article  PubMed  CAS  Google Scholar 

  19. García Garayoa E, Maes V, Bläuenstein P, Blanc A, Hohn A, Tourwé D, et al. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NT receptor-positive tumors. Nucl Med Biol. 2006;33:495–503.

    Article  PubMed  CAS  Google Scholar 

  20. Buchegger F, Bonvin F, Kosinski M, Schaffland AO, Prior J, Reubi JC, et al. Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med. 2003;44:1649–54.

    PubMed  CAS  Google Scholar 

  21. Maes V, García Garayoa E, Bläuenstein P, Tourwé DA. Novel 99mTc-labelled neurotensin analogs with optimized biodistribution properties. J Med Chem. 2006;49:1833–6.

    Article  PubMed  CAS  Google Scholar 

  22. Schibli R, La Bella R, Alberto R, Garcia Garayoa E, Ortner K, Abram U, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem. 2000;11:345–51.

    Article  CAS  Google Scholar 

  23. García Garayoa E, Allemann-Tannahill L, Bläuenstein P, Willmann M, Carrel-Rémy N, Tourwé D, et al. In vitro and in vivo evaluation of new radiolabeled neurotensin(8–13) analogues with high affinity for NT1 receptors. Nucl Med Biol. 2001;28:75–84.

    Article  PubMed  Google Scholar 

  24. Vita N, Laurent P, Lefort S, Chalon P, Dumont X, Kaghad M, et al. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett. 1993;317:139–42.

    Article  PubMed  CAS  Google Scholar 

  25. Mazella J, Vincent JP. Internalization and recycling properties of neurotensin receptors. Peptides. 2006;27:2488–92.

    Article  PubMed  CAS  Google Scholar 

  26. de Visser M, Janssen PJJM, Srinivasan A, Reubi JC, Waser B, Erion JL, et al. Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging. 2003;30:1134–9.

    Article  PubMed  CAS  Google Scholar 

  27. Achilefu S, Srinivasan A, Schmidt MA, Jimenez HN, Bugaj JE, Erion JL. Novel bioactive and stable neurotensin peptide analogues capable of delivering radiopharmaceuticals and molecular beacons to tumors. J Med Chem. 2003;46:3403–11.

    Article  PubMed  CAS  Google Scholar 

  28. Behr TM, Jenner N, Béhé M, Angerstein C, Gratz S, Raue F, et al. Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med. 1999;40:1029–44.

    PubMed  CAS  Google Scholar 

  29. Boerman OC, Oyen WJG, Corstens FHM. Between the Scylla and Charybdis of peptide radionuclide therapy: hitting the tumor and saving the kidney. Eur J Nucl Med. 2001;28:1447–9.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang K, An R, Gao Z, Zhang Y, Aruva MR. Radionuclide imaging of small-cell lung cancer (SCLC) using 99mTc-labeled neurotensin peptide 8–13. Nucl Med Biol. 2006;28:505–12.

    Article  CAS  Google Scholar 

  31. Lambert B, Cybulla M, Weiner SM, Van de Wiele C, Ham H, Dierckx RA, et al. Renal toxicity after radionuclide therapy. Radiat Res. 2004;161:607–11.

    Article  PubMed  CAS  Google Scholar 

  32. Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabelled antibody fragments, and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998;25:201–12.

    Article  PubMed  CAS  Google Scholar 

  33. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imag. 2003;30:9–15.

    Article  CAS  Google Scholar 

  34. Vegt E, Wetzels JFM, Russel FGM, Masereeuw R, Boerman OC, van Eerd JE, et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med. 2006;47:432–6.

    PubMed  CAS  Google Scholar 

  35. Boerma M, Wang J, Burnett AF, Santin AD, Roman JJ, Hauer-Jensen M. Local administration of interleukin-11 ameliorates intestinal radiation injury in rats. Cancer Res. 2007;67:9501–6.

    Article  PubMed  CAS  Google Scholar 

  36. Boerma M, Wang J, Richter KK, Hauer-Jensen M. Orazipone, a locally acting immunomodulator, ameliorates intestinal radiation injury: a preclinical study in a novel rat model. Int J Radiat Oncol Biol Phys. 2006;66:552–9.

    PubMed  CAS  Google Scholar 

  37. Wang J, Hauer-Jensen M. Radiation toxicity and proteinase–activated receptors. Drug Dev Res. 2003;60:1–8.

    Article  CAS  Google Scholar 

  38. Wang J, Zheng H, Ou X, Albertson CM, Fink LM, Herbert JM, et al. Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. J Thromb Haemostasis. 2004;2:2027–35.

    Article  CAS  Google Scholar 

  39. Wang J, Boerma M, Fu Q, Kulkarni A, Fink LM, Hauer-Jensen M. Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys. 2007;68:1483–90.

    PubMed  CAS  Google Scholar 

  40. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12:738–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Fund for Scientific Research-Flanders Belgium (contract No. G.0036.04) for financial support, Ms. Harriet Struthers for her assistance with editing the manuscript and Ms. Margaretha Lutz for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa García-Garayoa.

Additional information

This work was partly funded by the Fund for Scientific Research-Flanders (Belgium), contract No. G.0036.04.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Garayoa, E., Bläuenstein, P., Blanc, A. et al. A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 36, 37–47 (2009). https://doi.org/10.1007/s00259-008-0894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0894-y

Keywords

Navigation