Skip to main content

SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

Wind-turbine blades exposed to rain can be damaged by erosion if not protected. Although this damage does not typically influence the structural response of the blades, it could heavily degrade the aerodynamic performance, and therefore the power production. We present a method for computational analysis of rain erosion in wind-turbine blades. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. Accurate representation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a RANS model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence–particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. The erosion patterns are then computed based on the particle-cloud data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powell, S.: 3M wind blade protection coating. Industrial Marketing Presentation W4600, 3M (2011)

    Google Scholar 

  2. 3M: A 3M study is the first to show the effects of erosion on wind turbine efficiency. [Online] www.pressebox.com/pressrelease/3m-deutschland-gmbh/A-3M-Study-Is-the-First-to-Show-the-Effects-of-Erosion-on-Wind-Turbine-Efficiency/boxid/445007 (2011)

  3. Wood, K.: Blade repair: closing the maintenance gap. Technical Report, Composites Technology (2011)

    Google Scholar 

  4. Tabakoff, W., Kotwal, R., Hamed, A.: Erosion study of different materials affected by coal ash particles. Wear 52, 161–173 (1979)

    Article  Google Scholar 

  5. Keegan, M.H., Nash, D.H., Stack, M.M.: On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D Appl. Phys. 46, 383001 (2013)

    Article  Google Scholar 

  6. Grant, G., Tabakoff, W.: Erosion prediction in turbomachinery resulting from environmental solid particles. J. Aircr. 12, 471–478 (1975)

    Article  Google Scholar 

  7. Hussein, M.F., Tabakoff, W.: Computation and plotting of solid particle flow in rotating cascades. Comput. Fluids 2, 1–15 (1974)

    Article  MATH  Google Scholar 

  8. Elfeki, S., Tabakoff, W.: Erosion study of radial flow compressor with splitters. J. Turbomach. 109, 62–69 (1987)

    Article  Google Scholar 

  9. Ghenaiet, A., Tan, S.C., Elder, R.L.: Experimental investigation of axial fan erosion and performance degradation. Proc. Inst. Mech. Eng. Part A J. Power Energy 218, 437–446 (1987)

    Article  Google Scholar 

  10. Ghenaiet, A.: Numerical simulations of flow and particle dynamics within a centrifugal turbomachine. Compressors and Their Systems, vol. 218 (2005). IMechE Paper No. C639-52

    Google Scholar 

  11. Corsini, A., Rispoli, F., Sheard, A.G., Takizawa, K., Tezduyar, T.E., Venturini, P.: A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput. Mech., 54, 1191–1202 (2014). doi: 10.1007/s00466-014-1050-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Haag, M.: Advances in leading edge protection of wind turbine blades. EWEA Annual Wind Energy Event, Vienna (2013)

    Google Scholar 

  13. Weigel, W.: Advanced rotor blade erosion protection system. Technical Report, Kaman Aerospace Corporation (1996)

    Google Scholar 

  14. TGM-Services: Blade erosion, 2011 [Online]. Available: http://tgmwind.com/bladeerosion.html# bladeerosion

    Google Scholar 

  15. Henkel: Blade maintenance, 2013 [Online]. Available: http://www.henkelna.com/industrial/blade-maintenance-19836.htm

  16. Broadwind-Energy: Blade services, 2012 [Online]. Available: http://www.bwen.com/WindTurbineBladeServices_7777.aspx

  17. Ropeworks: Blade repair and maintenance services, 2011 [Online]. Available: http://www.ropeworks.com/service_wind_blade.htm

  18. Gohardani, O.: Impact of erosion testing aspects on current and future flight conditions. Prog. Aerosp. Sci. 47, 280–303 (2011)

    Article  Google Scholar 

  19. University of Dayton Research Institute: Rain erosion test facility, 2013 [Online] Available: http://www.udri.udayton.edu/NONSTRUCTURALMATERIALS/COATINGS/Pages/RainErosionTestFacility.aspx

  20. Corsini, A., Castorrini, A., Morei, E., Rispoli, F., Sciulli, F., Venturini, P.: Modeling of rain drop erosion in a multi-MW wind turbine. ASME Turbo Expo, Montreal (2015)

    Book  Google Scholar 

  21. Baxter, L.L., Smith, P.J.: Turbulent dispersion of particles: the STP model. Energy Fuels 7, 852–859 (1993)

    Article  Google Scholar 

  22. Venturini, P.: Modelling of particle-wall deposition in two-phase gas-solid flows. Ph.D. thesis, Sapienza University of Rome (2010)

    Google Scholar 

  23. Cardillo, L., Corsini, A., Delibra, G., Rispoli, F., Sheard, A.G., Venturini, P.: Simulation of particle-laden flows in a large centrifugal fan for erosion prediction. In: 58th American Society of Mechanical Engineers Turbine and Aeroengine Congress, Düsseldorf (2015)

    Google Scholar 

  24. Kaer, S.K.: Numerical investigation of ash deposition in straw-fired furnaces. Ph.D. thesis, Aalborg University (2001)

    Google Scholar 

  25. Corsini, A., Marchegiani, A., Rispoli, F., Venturini, P.: Predicting blade leading edge erosion in an axial induced draft fan. ASME J. Eng. Gas Turbines Power, 134, 042601 (1993)

    Article  Google Scholar 

  26. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992). doi: 10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992). doi: 10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  29. Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986). doi: 10.1016/0045-7825(86)90003-4

    Article  MATH  Google Scholar 

  30. Corsini, A., Rispoli, F., Santoriello, A., Tezduyar, T.E.: Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput. Mech. 38, 356–364 (2006). doi:10.1007/s00466-006-0045-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Corsini, A., Menichini, C., Rispoli, F., Santoriello, A., Tezduyar, T.E.: A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reaction like terms. J. Appl. Mech. 76, 021211 (2009). doi:10.1115/1.3062967

    Article  Google Scholar 

  32. Corsini, A., Iossa, C., Rispoli, F., Tezduyar, T.E.: A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput. Mech. 46, 159–167 (2010). doi:10.1007/s00466-009-0441-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Corsini, A., Rispoli, F., Tezduyar, T.E.: Stabilized finite element computation of NOx emission in aero-engine combustors. Int. J. Numer. Methods Fluids 65, 254–270 (2011). doi:10.1002/fld.2451

    Article  MathSciNet  MATH  Google Scholar 

  34. Tezduyar, T.E., Park, Y.J., Deans, H.A.: Finite element procedures for time-dependent convection-diffusion-reaction systems. Int. J. Numer. Methods Fluids 7, 1013–1033 (1987). doi:10.1002/fld.1650071003

    Article  MATH  Google Scholar 

  35. Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984). doi:10.1016/0045-7825(84)90157-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993). doi:10.1016/0045-7825(93)90033-T

    Article  MATH  Google Scholar 

  37. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000) doi:10.1016/S0045-7825(00)00211-5

    Article  MATH  Google Scholar 

  38. Akin, J.E., Tezduyar, T., Ungor, M., Mittal, S.: Stabilization parameters and Smagorinsky turbulence model. J. Appl. Mech. 70, 2–9 (2003). doi:10.1115/1.1526569

    Article  MATH  Google Scholar 

  39. Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003). doi:10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  40. Akin, J.E., Tezduyar, T.E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput. Methods Appl. Mech. Eng. 193, 1909–1922 (2004). doi:10.1016/j.cma.2003.12.050

    Article  MATH  Google Scholar 

  41. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006). doi:10.1016/j.cma.2005.05.032

    Article  MathSciNet  MATH  Google Scholar 

  42. Tezduyar, T.E.: Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput. Fluids 36, 191–206 (2007). doi:10.1016/j.compfluid.2005.02.011

    Article  MathSciNet  MATH  Google Scholar 

  43. Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput. Fluids 36, 147–159 (2007). doi:10.1016/j.compfluid.2005.07.009

    Article  MATH  Google Scholar 

  44. Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput. Mech. 38, 469–481 (2006). doi:10.1007/s00466-005-0025-6

    Article  MATH  Google Scholar 

  45. Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007). doi:10.1016/j.compfluid.2005.07.004

    Article  MATH  Google Scholar 

  46. Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Methods Fluids 54, 593–608 (2007). doi:10.1002/fld.1484

    Article  MathSciNet  MATH  Google Scholar 

  47. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hughes, T.J.R., Scovazzi, G., Tezduyar, T.E.: Stabilized methods for compressible flows. J. Sci. Comput. 43, 343–368 (2010). doi:10.1007/s10915-008-9233-5. doi:10.1007/s10915-008-9233-5

    Google Scholar 

  49. Hsu, M.-C., Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Eng. 199, 828–840 (2010). doi:10.1016/j.cma.2009.06.019

    Article  MathSciNet  MATH  Google Scholar 

  50. Tezduyar, T.E.: Comments on adiabatic shock capturing in perfect gas hypersonic flows. Int. J. Numer. Methods Fluids 66, 935–938 (2011). doi:10.1002/fld.2293

    Article  MathSciNet  MATH  Google Scholar 

  51. Takizawa, K., Tezduyar, T.E.: Multiscale space-time fluid-structure interaction techniques. Comput. Mech. 48, 247–267 (2011). doi:10.1007/s00466-011-0571-z

    Article  MathSciNet  MATH  Google Scholar 

  52. Takizawa, K., Henicke, B., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 333–344 (2011). doi:10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  53. Takizawa, K., Henicke, B., Montes, D., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 647–657 (2011). doi:10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  54. Kler, P.A., Dalcin, L.D., Paz, R.R., Tezduyar, T.E.: SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput. Mech. 51, 171–185 (2013). doi:10.1007/s00466-012-0712-z

    Article  MathSciNet  MATH  Google Scholar 

  55. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MATH  Google Scholar 

  56. Borello, D., Corsini, A., Rispoli, F.: A finite element overlapping scheme for turbomachinery flows on parallel platforms. Comput. Fluids 32, 1017–1047 (2003)

    Article  MATH  Google Scholar 

  57. Corsini, A., Rispoli, F.: Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure. Int. J. Heat Fluid Flow 17, 108–155 (2005)

    Google Scholar 

  58. Craft, T.J., Launder, B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow 17, 108–155 (1996)

    Article  Google Scholar 

  59. Lain, S., Sommerfeld, M.: Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int. J. Heat Fluid Flow 24, 616–625 (2003)

    Article  Google Scholar 

  60. Tezduyar, T.E., Takizawa, K., Moorman, C., Wright, S., Christopher, J.: Space-time finite element computation of complex fluid–structure interactions. Int. J. Numer. Methods Fluids 64, 1201–1218 (2010). doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  61. Baxter, L.L.: Turbulent transport of particles. Ph.D. thesis, Brigham Young University (1989)

    Google Scholar 

  62. Wang, L.P.: On the dispersion of heavy particles by turbulent motion. Ph.D. thesis, Washington State University (1990)

    Google Scholar 

  63. Litchford, L.J., Jeng, S.M.: Efficient statistical transport model for turbulent particle dispersion in sprays. AIAA J. 29, 1443–1451 (1991)

    Article  Google Scholar 

  64. Jain, S.: Three-dimensional simulation of turbulent particle dispersion. Ph.D. thesis, University of Utah (1995)

    Google Scholar 

  65. Borello, D., Venturini, P., Rispoli, F., Saavedra, G.Z.R.: Prediction of multiphase combustion and ash deposition within a biomass furnace. Appl. Energy 101, 413–422 (2013)

    Article  Google Scholar 

  66. Venturini, P., Borello, D., Iossa, C.V., Lentini, D., Rispoli, F.: Modelling of multiphase combustion and deposit formation and deposit formation in a biomass-fed boiler. Energy 35, 3008–3021 (2010)

    Article  Google Scholar 

  67. Armenio, V., Fiorotto, V.: The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 2437–2440 (2001)

    Article  MATH  Google Scholar 

  68. Schiller, L., Naumann, A.: Uber die grundlegenden berechnungen bei der schwekraftaubereitung. Z. Ver. Dtsch. Ing. 77, 318–320 (1933)

    Google Scholar 

  69. Smith, P.J.: 3-D turbulent particle dispersion submodel development. Quarterly progress report, Department of Energy, Pittsburgh Energy Technology Center (1991)

    Google Scholar 

  70. Corsini, A., Rispoli, F., Santoriello, A.: A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput. Methods Appl. Mech. Eng. 194, 4797–4823 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Keegan, M.H., Nash, D.H., Stack, M.M.: Numerical modelling of hailstone impact on the leading edge of a wind turbine blade. EWEA Annual Wind Energy Event, Vienna (2013)

    Google Scholar 

  72. Evans, A.G., Gulden, M.E., Eggum, G.E., Rosenblatt, M.: Impact damage in brittle materials in the elastic response regime. Technical Report SC5023, Rockwell International Science Centre (1976)

    Google Scholar 

  73. Bazilevs, Y., Hsu, M.-C., Akkerman, I., Wright, S., Takizawa, K., Henicke, B., Spielman, T., Tezduyar, T.E.: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65, 207–235 (2011). doi:10.1002/fld.2400

    MATH  Google Scholar 

  74. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput. Mech. 50, 499–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Hsu, M.-C., Bazilevs, Y.: Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput. Mech. 50, 821–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, New York (2013). ISBN 978-0470978771

    Book  MATH  Google Scholar 

  77. Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math. Models Methods Appl. Sci. 22, 1230002 (2012). doi:10.1142/S0218202512300025

    Article  MATH  Google Scholar 

  78. Takizawa, K., Tezduyar, T.E., McIntyre, S., Kostov, N., Kolesar, R., Habluetzel, C.: Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput. Mech. 53, 1–15 (2014). doi:10.1007/s00466-013-0888-x

    Article  MATH  Google Scholar 

  79. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.-C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space-time methods. Arch. Comput. Meth. Eng. 21, 481–508 (2014). doi:10.1007/s11831-014-9113-0

    Article  MathSciNet  Google Scholar 

  80. Bazilevs, Y., Takizawa, K., Tezduyar, T.E., Hsu, M.-C., Kostov, N., McIntyre, S.: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch. Comput. Meth. Eng. 21, 359–398 (2014). doi:10.1007/s11831-014-9119-7

    Article  MathSciNet  Google Scholar 

  81. Takizawa, K., Tezduyar, T.E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., Montel, K.: Space–time VMS method for flow computations with slip interfaces (ST-SI). Math. Models Methods Appl. Sci. 25, 2377–2406 (2015). doi: 10.1142/S0218202515400126

    Article  MathSciNet  MATH  Google Scholar 

  82. Glauert, H.: Windmills and Fans. Springer, Berlin (1935)

    Google Scholar 

  83. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory (2009)

    Google Scholar 

  84. NWTC Information Portal (FAST v7). https://nwtc.nrel.gov/FAST7 (2016)

Download references

Acknowledgements

The authors acknowledge MIUR support under the project Ateneo and the Visiting Professor Programme at University of Rome “La Sapienza.” The authors also acknowledge support from SED (Soluzioni per l’Energia e la Diagnostica) and Waseda University, Department of Modern Mechanical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Corsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castorrini, A., Corsini, A., Rispoli, F., Venturini, P., Takizawa, K., Tezduyar, T.E. (2016). SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_7

Download citation

Publish with us

Policies and ethics