Skip to main content

PET in Neurological and Psychiatric Disorders: Technologic Advances and Clinical Applications

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

This chapter resumes applications of PET in neurological and psychiatric disease and research. Routine applications and recent developments in [18F]FDG-PET are dealt with, followed by the role of amyloid PET as inclusion parameter in clinical trials. A large series of PET tracers do target neurotransmitter signaling at various steps. This serves as a tool to decipher the pathophysiology of disease as well as to conduct pharmacokinetic and dose-finding studies of new drug candidates. After presenting the different types of experimental approaches, an overview of targets is given that had been imaged thus far by PET in the human brain. Taken together, PET imaging always accompanied and catalyzed the emergence of new technologies – may it be deep brain stimulation or new biomarkers – at the threshold to routine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K i) and the concentration which causes 50 per cent inhibition (IC 50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108.

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  4. Norinder U, Haeberlein M. Computational approaches to the prediction of the blood–brain distribution. Adv Drug Deliv Rev. 2002;54:291–313.

    Article  CAS  PubMed  Google Scholar 

  5. Desai A, Sawada G, Watson IA, Raub TJ. Integration of on silico and in vitro tools for scaffold optimization during drug discovery: predicting p-glycoprotein efflux. Mol Pharm. 2013;10:1249–61.

    Article  CAS  PubMed  Google Scholar 

  6. Moore DF, Altarescu G, Barker WC, et al. White matter lesions in Fabry disease occur in ‘prior’ selectively hypometabolic and hyperperfused brain regions. Brain Res Bull. 2003;62:231–40.

    Article  CAS  PubMed  Google Scholar 

  7. Nugent AC, Diazgranados N, Carlson PJ, et al. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord. 2014;16:119–28.

    Article  CAS  PubMed  Google Scholar 

  8. Heiss WD. Radionuclide imaging of stroke. J Nucl Med. 2014;55:1831–41.

    Article  CAS  PubMed  Google Scholar 

  9. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.

    Article  PubMed  Google Scholar 

  10. Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 2010;9:1118–27.

    Article  PubMed  Google Scholar 

  11. ADx-Neurosciences-Euroimmun-Product-data-sheet. Microtiter ELISA EQ 6511-9601-L, EQ 6521-9601-L, EQ 6531-9601-L. In: http://www.euroimmun.de/fileadmin/template/images/pdf/Alzheimer_PLUS_Tau_und_APOE.pdf; 2014.

  12. Wiltfang J, Esselmann H, Bibl M, et al. Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem. 2007;101:1053–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cruchaga C, Haller G, Chakraverty S, et al. NIA-LOAD/NCRAD Family Study Consortium. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One. 2012;7:e31039.

    Google Scholar 

  14. Davison CM, O’Brien JT. A comparison of FDG-PET and blood flow SPECT in the diagnosis of neurodegenerative dementias: a systematic review. Int J Geriatr Psychiatry. 2014;29:551–61.

    Article  PubMed  Google Scholar 

  15. Tripathi M, Tripathi M, Damle N, et al. Differential diagnosis of neurodegenerative dementias using metabolic phenotypes on F-18 FDG PET/CT. Neuroradiol J. 2014;27:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim HJ, Yoon CW, Ye BS, et al. Vascular dementia. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014.

    Google Scholar 

  17. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  18. Kadir A, Andreasen N, Almkvist O, et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol. 2008;63:621–31.

    Article  CAS  PubMed  Google Scholar 

  19. Keller C, Kadir A, Forsberg A, Porras O, Nordberg A. Long-term effects of galantamine treatment on brain functional activities as measured by PET in Alzheimer’s disease patients. J Alzheimers Dis. 2011;24:109–23.

    CAS  PubMed  Google Scholar 

  20. Landau SM, Harvey D, Madison CM, et al. Alzheimer’s Disease Neuroimaging Initiative. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–8.

    Google Scholar 

  21. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhi DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine [18F]FDG-PET. J Nucl Med. 2005;36:1238–48.

    Google Scholar 

  22. Caroli A, Lorenzi M, Geroldi C, et al. Metabolic compensation and depression in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;29:37–45.

    Article  CAS  PubMed  Google Scholar 

  23. Schöll M, Damian A, Engler H. Fluoredesoxyglucose PET in neurology and psychiatry. PET Clin. 2014;9:371–90.

    Article  PubMed  Google Scholar 

  24. Fidzinski P, Jarius S, Gaebler C, et al. Faciobrachial dystonic seizures and antibodies to Lgi1 in a 92-year old patient: a case report. J Neurol Sci. 2015;347:404–5.

    Article  Google Scholar 

  25. Ossenkoppele R, Booij J, Scheltens P, van Berckel BNM. Dementia due to neurodegenerative disease: molecular imaging findings. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 185–211.

    Google Scholar 

  26. Catafau AM. Brain SPECT in clinical practice: part I: perfusion. J Nucl Med. 2001;42:259–71.

    CAS  PubMed  Google Scholar 

  27. Egloff N, Sabbione ME, Salathé C, Wiest R, Juengling FD. Nondermatomal somatosensory deficits in patients with chronic pain disorder: clinical findings and hypometabolic pattern in FDG-PET. Pain. 2009;145:252–8.

    Article  PubMed  Google Scholar 

  28. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brody AL, Saxena S, Stoessel P, et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry. 2001;58:631–40.

    Article  CAS  PubMed  Google Scholar 

  30. Kennedy SH, Konarski JZ, Segal ZV, et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry. 2007;164:778–88.

    Article  PubMed  Google Scholar 

  31. Mayberg HS, Silva JA, Brannan SK, et al. The functional neuroanatomy of the placebo effect. Am J Psychiatry. 2002;159:728–37.

    Article  PubMed  Google Scholar 

  32. Holthoff VA, Beuthien-Baumann B, Pietrzyk U, et al. Changes in regional cerebral perfusion in depression. SPECT monitoring of response to treatment. Nervenarzt. 1999;70:620–6.

    Article  CAS  PubMed  Google Scholar 

  33. Bonne O, Krausz V, Shapira B, et al. Increased cerebral blood flow in depressed patients responding to electroconvulsive therapy. J Nucl Med. 1996;37:1075–80.

    CAS  PubMed  Google Scholar 

  34. Cohen RM, Gross M, Nordahl TE, et al. Preliminary data on the metabolic brain pattern of patients with winter seasonal affective disorder. Arch Gen Psychiatry. 1992;49:545–52.

    Article  CAS  PubMed  Google Scholar 

  35. Bremner JD, Innis RB, Salomon RM, et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse. Arch Gen Psychiatry. 1997;54:364–74.

    Article  CAS  PubMed  Google Scholar 

  36. Mayberg HS, Brannan SK, Mahurin RK, et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8:1057–61.

    Article  CAS  PubMed  Google Scholar 

  37. Crowell AL, Garlow SJ, Riva-Posse P, Mayberg HS. Characterizing the therapeutic response to deep brain stimulation for treatment-resistant depression: a single center long-term perspective. Front Integr Neurosci. 2015;9:41.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dunlop BW, Kelley ME, McGrath CL, Craighead WE, Mayberg HS. Preliminary findings supporting insula metabolic activity as a predictor of outcome to psychotherapy and medication treatments for depression. J Neuropsychiatry Clin Neurosci. 2015;27:237–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brooks III JO, Hoblyn JC, Woodard SA, Rosen AC, Ketter TA. Corticolimbic metabolic dysregulation in euthymic older adults with bipolar disorder. J Psychiatr Res. 2009;43:497–502.

    Article  PubMed  Google Scholar 

  40. Haarman BCM, van der Lek RFR, Ruhé HG, et al. Bipolar disorders. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, den Boer JA, editors. PET and SPECT in psychiatry. Heidelberg: Springer; 2014.

    Google Scholar 

  41. Rubinsztein JS, Fletcher PC, Rogers RD, et al. decision making in mania: a PET study. Brain. 2001;124:2550–63.

    Article  CAS  PubMed  Google Scholar 

  42. Schneider K. Klinische psychopathologie. 15th ed. Stuttgart: Thieme; 2007.

    Google Scholar 

  43. Clark C, Kopala L, Li DK, Hurwitz T. Regional cerebral glucose metabolism in never-medicated patients with schizophrenia. Can J Psychiatry. 2001;46:340–5.

    CAS  PubMed  Google Scholar 

  44. Buchsbaum MS, Buchsbaum BR, Hazlett EA, et al. Relative glucose metabolic rate higher in white matter in patients with schizophrenia. Am J Psychiatry. 2007;164:1072–81.

    Article  PubMed  Google Scholar 

  45. Altamura AC, Bertoldo A, Marotta G, et al. White matter metabolism differentiates schizophrenia and bipolar disorder: a preliminary PET study. Psychiatry Res. 2013;214:410–4.

    Article  PubMed  Google Scholar 

  46. Bossong MG, Allen P. PET and SPECT findings in patients with hallucinations. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, den Boer JA, editors. PET and SPECT in psychiatry. Heidelberg: Springer; 2014.

    Google Scholar 

  47. Klirova M, Horacek J, Novak T, et al. Individualized rTMS neuronavigated according to regional brain metabolism ([18F]FGD PET) has better treatment effects on auditory hallucinations than standard positioning of rTMS: a double-blind, sham-controlled study. Eur Arch Psychiatry Clin Neurosci. 2013;263:475–84.

    Article  PubMed  Google Scholar 

  48. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.

    Article  PubMed  Google Scholar 

  49. Fredrikson M, Faria V, Furmark T. Neurotransmission: a review of PET and SPECT studies in anxiety disorders. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, den Boer JA, editors. PET and SPECT in psychiatry. Heidelberg: Springer; 2014.

    Google Scholar 

  50. Baxter Jr LR, Phelps ME, Mazziotta JC, et al. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry. 1987;44:800.

    Article  Google Scholar 

  51. Brody AL, Saxena S, Schwartz JM, et al. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res. 1998;84:1–6.

    Article  CAS  PubMed  Google Scholar 

  52. Nordahl TE, Benkelfat C, Semple WE, et al. Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology. 1989;2:23–8.

    Article  CAS  PubMed  Google Scholar 

  53. de Paula FD, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol. 2014;9:468–82.

    Article  Google Scholar 

  54. Engler H, Lundberg PO, Ekbom K, et al. Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease. Eur J Nucl Med Mol Imaging. 2003;30:85–95.

    Article  CAS  PubMed  Google Scholar 

  55. Müller HF, Viaccoz A, Fisch L, et al. 18FDG-PET-CT: an imaging biomarker of high-risk carotid plaques. Correlation to symptoms and microembolic signals. Stroke. 2014;45:3561–6.

    Article  PubMed  CAS  Google Scholar 

  56. Mani V, Woodward M, Samber D, et al. Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study. Int J Cardiovasc Imaging. 2014;30:571–82.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marnane M, Merwick A, Sheehan OC, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71:709–18.

    Article  PubMed  Google Scholar 

  58. Rudd JH, Myers KS, Bansilal S, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging. 2009;2:107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morales-Chacón LM, Sánchez-Catasús CA, Quincoses OT, Lorigados-Pedre L, Dierckx RAJO. Nuclear medicine neuroimaging and electromagnetic source localization in nonlesional drug-resistant focal epilepsy. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 843–60.

    Google Scholar 

  60. Hong SB, Tae WS. SISCOM (Subtraction ictal SPECT coregistered to MRI). In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 829–41.

    Google Scholar 

  61. O’Brien TJ, O’Connor MK, Mullan BP, et al. Subtraction ictal SPET co-registered to MRI in partial epilepsy: description and technical validation of the method with phantom and patient studies. Nucl Med Commun. 1998;19:31–45.

    Article  PubMed  Google Scholar 

  62. Fernández S, Donaire A, Serès E, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res. 2015;111:1–9.

    Article  PubMed  Google Scholar 

  63. Desai A, Bekelis K, Thadani VM, et al. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia. 2013;54:341–50.

    Article  PubMed  Google Scholar 

  64. Grouiller F, Delattre BM, Pittau F, et al. All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging. 2015;42:1133–43.

    Article  PubMed  Google Scholar 

  65. Hammers A, Koepp MJ, Hurlemann R, et al. Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. Brain. 2002;125:2257–71.

    Article  CAS  PubMed  Google Scholar 

  66. Van Laere K, Clerinx K, D’Hondt E, de Groot T, Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med. 2010;51:588–95.

    Article  PubMed  CAS  Google Scholar 

  67. Niccolini F, Su P, Politis M. Dopamine receptor mapping with PET imaging in Parkinson’s disease. J Neurol. 2014;261:2251–63.

    Article  CAS  PubMed  Google Scholar 

  68. Kortekaas R, Georgiadis JR. An investigation of statistical power of [15O]-H2O PET perfusion imaging: The influence of delay and time interval. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 139–48.

    Google Scholar 

  69. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.

    CAS  PubMed  Google Scholar 

  70. Huang SC, Feng DG, Phelps ME. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1986;6:105–19.

    Article  CAS  PubMed  Google Scholar 

  71. Kuhn FP, Warnock G, Schweingruber T, et al. Quantitative H2[15O]-PET in pediatric moyamoya disease: evaluating perfusion before and after cerebral revascularization. J Stroke Cerebrovasc Dis. 2015;25:965–71.

    Article  Google Scholar 

  72. Nezu T, Yokota C, Uehara T, et al. Preserved acetazolamide reactivity in lacunar patients with severe white-matter lesions: 15O-labeled gas and H2O positron emission tomography studies. J Cereb Blood Flow Metab. 2012;32:844–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Imaizumi M, Kitagawa K, Oku N, et al. Clinical significance of cerebrovascular reserve in acetazolamide challenge -comparison with acetazolamide challenge H2O-PET and Gas-PET. Ann Nucl Med. 2004;18:369–74.

    Article  PubMed  Google Scholar 

  74. Reinges MH, Krings T, Meyer PT, et al. Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system. Nucl Med Commun. 2004;25:987–97.

    Article  PubMed  Google Scholar 

  75. Heiss WD, Grond M, Thiel A, et al. Tissue at risk of infarction rescued by early reperfusion: a positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab. 1998;18:1298–307.

    Article  CAS  PubMed  Google Scholar 

  76. Alawneh JA, Moustafa RR, Marrapu ST, et al. Diffusion and perfusion correlates of the 18F-MISO PET lesion in acute stroke: pilot study. Eur J Nucl Med Mol Imaging. 2014;41:736–44.

    Article  CAS  PubMed  Google Scholar 

  77. Villemagne VL, Fodero-Tavoletti M, Yates P, Masters C, Rowe C. Aβ imaging in aging, Alzheimer’s disease and other neurodegenerative conditions. In: Dierckx RAJO, Otte A, Vries EFJ, Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 213–54.

    Google Scholar 

  78. Mason NS, Mathis CA, Klunk WE. Positron emission tomography radioligands for in vivo imaging of Aβ plaques. J Label Compd Radiopharm. 2012;56:89–95.

    Article  CAS  Google Scholar 

  79. Villemagne VL, Mulligan R, Pejoska S, et al. Comparison of [11C]PiB and [18F]florbetaben for Aβ imaging in aging and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:983–9.

    Article  CAS  PubMed  Google Scholar 

  80. Cselényi Z, Jönhagen ME, Forsberg A, et al. Clinical validation of 18F-AZD4694, an amyloid-ß-specific PET radioligand. J Nucl Med. 2012;53:415–24.

    Article  PubMed  CAS  Google Scholar 

  81. Jack Jr CR, Barrio JR, Kepe V. Cerebral amyloid PET imaging in Alzheimer’s disease. Acta Neuropathol. 2013;126:643–57.

    Article  CAS  PubMed  Google Scholar 

  82. Landau SM, Fero A, Baker SL, et al. Measurement of longitudinal A-beta change with 18F florbetapir PET and standard uptake values. J Nucl Med. 2015;56:567–74.

    Article  CAS  PubMed  Google Scholar 

  83. Stankoff B, Freeman L, Aigrot MS, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80.

    Article  CAS  PubMed  Google Scholar 

  84. Kobylecki C, Langheinrich T, Hinz R, et al. 18F-florbetapir PET in patients with frontotemporal dementia and Alzheimer disease. J Nucl Med. 2015;56:386–91.

    Article  CAS  PubMed  Google Scholar 

  85. Sabbagh M, Seibyl J, Stephens A, et al. A negative florbetaben PET scan reliably excludes amyloid pathology as confirmed by histopathology in a large phase 3 trial. Piramal Neuraceq Summary of product characteristics. 2014.

    Google Scholar 

  86. Sabri O, Seibyl J, Rowe CC, Barthel H. Beta-amyloid imaging with flobetaben. Clin Transl Imaging. 2015;3:13–26.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jicha G, Parisi J, Dickson D, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63:674–81.

    Article  PubMed  Google Scholar 

  88. Irwin DJ, Trojanowski JQ, Grossman M. Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer’s disease. Front Aging Neurosci. 2013;5:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krudop WA, Kerssens CJ, Dols A, et al. Building a new paradigm for the early recognition of behavioral variant frontotemporal dementia: Late Onset Frontal Lobe Syndrome study. Am J Geriatr Psychiatry. 2014;22:735–40.

    Article  PubMed  Google Scholar 

  90. Reesink FE, Stormezand GN, Dierckx RAJO, De Deyn PP. Nuclear imaging in frontotemporal dementia. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014.

    Google Scholar 

  91. Ducksbury R, Whitfield T, Walker S. SPECT/PET findings in Lewy body dementia. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 373–415.

    Google Scholar 

  92. Bohnen NI, Frey KA. Parkinson dementia: PET findings. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 359–72.

    Google Scholar 

  93. Burack MA, Hartlein J, Flores HP, et al. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology. 2010;74:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salloway S, Sperling R, Fox NC, et al. Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:322–33.

    Google Scholar 

  95. Lo RY, Hubbard AE, Shaw LM, et al. Longitudianl change of biomarkers in cognitive decline. Arch Neurol. 2011;68:1257–66.

    Article  PubMed  Google Scholar 

  96. Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.

    Article  CAS  PubMed  Google Scholar 

  97. Kemppainen NM, Scheinin NM, Koivunen J, et al. Five-year follow-up of C-11-PIB uptake in Alzheimer’s disease and MCI. Eur J Nucl Med Mol Imaging. 2014;41:283–9.

    Article  CAS  PubMed  Google Scholar 

  98. Roche HL. SCarlet RoAD, a study of gantenerumab in patients with mild Alzheimer disease. 2015.

    Google Scholar 

  99. Frantz N. Clinical trials results and new data analyses in mayloid-related therapies from the Alzheimer’s association international conference 2015. In: Association As ed; 2015.

    Google Scholar 

  100. Jack Jr CR, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain. 2009;132:1355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Villemagne VL, Pike KE, Chetelat G, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kadir A, Almkvist O, Forsberg A, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer’s disease. Neurobiol Aging. 2012;33:198.e1–14.

    Article  Google Scholar 

  103. Koivunen J, Scheinin N, Virta JR, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90.

    Article  CAS  PubMed  Google Scholar 

  104. Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21.

    Article  CAS  PubMed  Google Scholar 

  105. Whone AL, Watts RL, Stoessl AJ, et al. REAL-PET Study Group. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003;54:93–101.

    Google Scholar 

  106. Bewernick BH, Hurlemann R, Matusch A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  107. Kuhn J, Hardenacke K, Lenartz D, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20:353–60.

    Article  CAS  PubMed  Google Scholar 

  108. Ackermann RF, Engel J, Baxter L. Positron emission tomography and autoradiographic studies of glucose utilization following electroconvulsive seizures in humans and rats. Ann N Y Acad Sci. 1986;462:263–9.

    Article  CAS  PubMed  Google Scholar 

  109. Kayser S, Bewernick BH, Matusch A, et al. Magnetic seizure therapy in treatment-resistant depression: clinical, neuropsychological and metabolic effects. Psychol Med. 2015;45:1073–92.

    Article  CAS  PubMed  Google Scholar 

  110. Yokoi F, Gründer G, Biziere K, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology. 2002;27:248–59.

    Article  CAS  PubMed  Google Scholar 

  111. Areberg J, Luntang-Jensen M, Søgaard B, Nilausen DØ. Occupancy of the serotonin transporter after administration of Lu AA21004 and its relation to plasma concentration in healthy subjects. Basic Clin Pharmacol Toxicol. 2012;110:401–4.

    Article  CAS  PubMed  Google Scholar 

  112. Stenkrona P, Halldin C, Lundberg J. 5-HTT and 5-HT(1A) receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects. Eur Neuropsychopharmacol. 2013;23:1190–8.

    Article  CAS  PubMed  Google Scholar 

  113. Natesan S, Reckless GE, Barlow KB, Nobrega JN, Kapur S. Evaluation of N-desmethylclozapine as a potential antipsychotic – preclinical studies. Neuropsychopharmacology. 2007;32:1540–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kågedal M, Cselényi Z, Nyberg S, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 – estimating occupancy in the absence of a reference region. Neuroimage. 2013;82:160–9.

    Article  PubMed  CAS  Google Scholar 

  115. Steffer J. Estimation of regional brain mGluR5 receptor occupancy following single oral doses of the mGluR5 antagonist AFQ056 with positron emission tomography (PET) of [11C]ABP688 in healthy volunteers. In: 3rd Winter Brain Symposium of the Psychogeriatric University Hospital Division of Psychiatry Research of the University of Zurich, Sils Maria; 2007.

    Google Scholar 

  116. Farde L, Wiesel FA, Halldin C, Sedvall G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry. 1988;45:71–6.

    Article  CAS  PubMed  Google Scholar 

  117. Farde L, Nordström AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.

    Article  CAS  PubMed  Google Scholar 

  118. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry. 2001;158:360–9.

    Article  CAS  PubMed  Google Scholar 

  119. Mizrahi R, Agid O, Borlido C, et al. Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res. 2011;131:63–8.

    Article  PubMed  Google Scholar 

  120. Varnäs K, Jucaite A, McCarthy DJ, et al. A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy male volunteers. Cephalalgia. 2013;33:853–60.

    Article  PubMed  Google Scholar 

  121. Meyer JH, Wilson AA, Ginovart N, et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry. 2001;158:1843–9.

    Article  CAS  PubMed  Google Scholar 

  122. Nyberg S, Jucaite A, Takano A, et al. Norepinephrine transporter occupancy in the human brain after oral administration of quetiapine XR. Int J Neuropsychopharmacol. 2013;16:2235–44.

    Article  CAS  PubMed  Google Scholar 

  123. Ding YS, Naganawa M, Gallezot JD, et al. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: implications on treatment of depression and ADHD. Neuroimage. 2014;86:164–71.

    Article  CAS  PubMed  Google Scholar 

  124. Meyer JH, Goulding VS, Wilson AA, et al. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology (Berl). 2002;163:102–5.

    Article  CAS  Google Scholar 

  125. Elmenhorst D, Meyer PT, Matusch A, Winz OH, Bauer A. Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with [18F]CPFPX and PET. J Nucl Med. 2012;53:1723–9.

    Article  CAS  PubMed  Google Scholar 

  126. Darreh-Shori T, Kadir A, Almkvist O, et al. Inhibition of acetylcholinesterase in CSF versus brain assessed by 11C-PMP PET in AD patients treated with galantamine. Neurobiol Aging. 2008;29:168–84.

    Article  CAS  PubMed  Google Scholar 

  127. Ishikawa M, Sakata M, Ichii K, et al. High occupancy of σ1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol. 2009;12:1127–31.

    Article  CAS  PubMed  Google Scholar 

  128. Food and Drug Administration. Innovation or stagnation: challenge and opportunity on the critical path to new medical products, vol. 1. Washington, DC; U.S. Department of Health and Human Services, Silver Spring, MD, USA, 2004. p. 1.

    Google Scholar 

  129. Lappin G, Garner RC. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov. 2003;2:233–40.

    Article  CAS  PubMed  Google Scholar 

  130. Yates R, Sörensen J, Bergström M, et al. Distribution of intranasal C-zolmitriptan assessed by positron emission tomography. Cephalalgia. 2005;25:1103–9.

    Article  CAS  PubMed  Google Scholar 

  131. Andersen VL, Hansen HD, Herth MM, Knudsen GM, Kristensen JL. 11C-labeling and preliminary evaluation of vortioxetine as a PET radioligand. Bioorg Med Chem Lett. 2014;24:2408–11.

    Article  CAS  PubMed  Google Scholar 

  132. Ermert J, Stüsgen S, Lang M, Roden W, Coenen HH. High molar activity of [11C]TCH346 via [11C]methyl triflate using the “wet” [11C]CO2 reduction method. Appl Radiat Isot. 2008;66:619–24.

    Article  CAS  PubMed  Google Scholar 

  133. Ridler K, Cunningham V, Huiban M, et al. An evaluation of the brain distribution of [11C]GSK1034702, a muscarinic-1 (M1) positive allosteric modulator in the living human brain using positron emission tomography. EJNMMI Res. 2014;4:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Bauer M, Karch R, Zeitlinger M, et al. Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood–brain barrier. J Nucl Med. 2013;54:1181–7.

    Article  CAS  PubMed  Google Scholar 

  135. Park HS, Kim E, Moon BS, et al. In vivo tissue pharmacokinetics of carbon-11-labeled clozapine in healthy volunteers: a positron emission tomography study. CPT Pharmacometrics Syst Pharmacol. 2015;4(5): 305–11.

    Google Scholar 

  136. Gjerløff T, Fedorova T, Knudsen K, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donezepil PET. Brain. 2015;138:653–63.

    Article  PubMed  Google Scholar 

  137. Tsukada H, Nishiyama S, Kakiuchi T, et al. Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride?: PET studies combined with microdialysis in conscious monkeys. Brain Res. 1999;841:160–9.

    Article  CAS  PubMed  Google Scholar 

  138. Bencherif B, Fuchs PN, Sheth R, et al. Pain activation of human supraspinal opioid pathways as demonstrated by [11C]carfentanil and positron emission tomography (PET). Pain. 2002;99:589–98.

    Article  CAS  PubMed  Google Scholar 

  139. Lundquist P, Wilking H, Urban Höglund A, et al. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies. Nucl Med Biol. 2005;32:129–36.

    Article  CAS  PubMed  Google Scholar 

  140. Sandiego CM, Nabulsi N, Lin SF, et al. Studies of the metabotropic glutamate receptor 5 radioligand [11C]ABP688 with N-acetylcysteine challenge in rhesus monkeys. Synapse. 2013;67:489–501.

    Article  CAS  PubMed  Google Scholar 

  141. Miyake N, Skinbjerg M, Easwaramoorthy B, et al. Imaging changes in glutamate transmission in vivo with the metabotropic glutamate receptor 5 tracer [11C] ABP688 and N-acetylcysteine challenge. Biol Psychiatry. 2011;69:822–4.

    Article  CAS  PubMed  Google Scholar 

  142. Zimmer ER, Parent MJ, Leuzy A, et al. Imaging in vivo glutamate fluctuations with [11C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab. 2015;35:1169–74.

    Article  CAS  PubMed  Google Scholar 

  143. DeLorenzo C, DellaGioia N, Bloch M, et al. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic Glutamate receptor Subtype 5. Biol Psychiatry. 2015;77:266–75.

    Article  CAS  PubMed  Google Scholar 

  144. Matusch A, Hurlemann R, Rota Kops E, et al. Acute S-ketamine application does not alter cerebral [18F]altanserin binding: a pilot study in humans. J Neural Transm. 2007;114:1433–42.

    Article  CAS  PubMed  Google Scholar 

  145. Vernaleken I, Klomp M, Moeller O, et al. Vulnerability to psychotogenic effects of ketamine is associated with elevated D2/3-receptor availability. Int J Neuropsychopharmacol. 2013;16:745–54.

    Article  CAS  PubMed  Google Scholar 

  146. Salmi E, Långsjö JW, Aalto S, et al. Subanesthetic ketamine does not affect 11C-flumazenil binding in humans. Anesth Analg. 2005;101:722–5.

    Article  CAS  PubMed  Google Scholar 

  147. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol. 1997;7:25–38.

    Article  CAS  PubMed  Google Scholar 

  148. Långsjö JW, Salmi E, Kaisti KK, et al. Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology. 2004;100:1065–71.

    Article  PubMed  Google Scholar 

  149. Långsjö JW, Kaisti KK, Aalto S, et al. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:614–23.

    Article  PubMed  Google Scholar 

  150. Striepens N, Matusch A, Kendrick KM, et al. Oxytocin enhances attractiveness of unfamiliar female faces independent of the dopamine reward system. Psychoneuroendocrinology. 2014;39:74–87.

    Article  CAS  PubMed  Google Scholar 

  151. Okazawa H, Tsuchida T, Pagani M, et al. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation. J Cereb Blood Flow Metab. 2006;26:92–8.

    Article  CAS  PubMed  Google Scholar 

  152. Frey K. Amyloid imaging in dementia: contribution or confusion? J Nucl Med. 2015;56:331–2.

    Article  PubMed  Google Scholar 

  153. Okamura N, Furumoto S, Fodero-Tavoletti MT, et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using F-18-THK5105 PET. Brain. 2014;137:1762–71.

    Article  PubMed  Google Scholar 

  154. Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

    Article  CAS  PubMed  Google Scholar 

  155. Chien DT, Szardenings AK, Bahri S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [18F]T808. J Alzheimers Dis. 2014;38:171–84.

    PubMed  Google Scholar 

  156. Kikuchi A, Takeda A, Okamura N, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain. 2010;133:1772–8.

    Article  PubMed  Google Scholar 

  157. Bauer M, Karch R, Zeitlinger M, et al. Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35:743–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mansor MS, Boellaard R, Froklage FE, et al. Quantification of dynamic 11C-Phenytoin PET studies. J Nucl Med. 2015;56:1372–7.

    Article  CAS  PubMed  Google Scholar 

  159. Postnov A, Froklage FE, van Lingen A, et al. Radiation dose of the P-glycoprotein tracer 11C-laniquidar. J Nucl Med. 2013;54:2101–3.

    Article  CAS  PubMed  Google Scholar 

  160. Deo AK, Borson S, Link JM, et al. Activity of P-glycoprotein, a ß-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55:1106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van Assema DM, Goos JD, van der Flier WM, et al. No evidence for additional blood–brain barrier P-glycoprotein dysfunction in Alzheimer’s disease patients with microbleeds. J Cereb Blood Flow Metab. 2012;32:1468–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Colasanti A, Guo Q, Muhlert N, et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with 18F-PBR111 PET. J Nucl Med. 2014;55:1112–8.

    Article  CAS  PubMed  Google Scholar 

  163. Oh U, Fujita M, Ikonomidou VN, et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol. 2011;6:354–61.

    Article  PubMed  Google Scholar 

  164. Vas A, Sóvágó J, Halldin C, et al. Cerebral uptake and regional distribution of [11C]-vinpocetin after intravenous administration to healthy men: a PET study. Orv Hetil. 2002;143:2631–6.

    PubMed  Google Scholar 

  165. Colasanti A, Piccini P. PET imaging in multiple sclerosis: focus on the translocator protein. In: Dierckx R, Otte A, de Vries E, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 757–74.

    Google Scholar 

  166. Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996;6:259–74.

    Article  CAS  PubMed  Google Scholar 

  167. Brooks DJ. PET imaging of translocator protein expression in neurological diseases. In: Dierckx R, Otte A, de Vries E, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014. p. 653–67.

    Google Scholar 

  168. Paul S, Khanapur S, Boersma W, et al. Cerebral adenosine A1 receptors are upregulated in rodent encephalitis. Neuroimage. 2014;92:83–9.

    Article  CAS  PubMed  Google Scholar 

  169. Carter S, Schöll M, Almkvist O, Wall A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46.

    Article  CAS  PubMed  Google Scholar 

  170. Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:397–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain. 2003;126:1127–35.

    Article  PubMed  Google Scholar 

  172. Kunig G, Leenders KL, Sanchez-Pernaute R, et al. Benzodiazepine receptor binding in Huntington’s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol. 2000;47:644–8.

    Article  CAS  PubMed  Google Scholar 

  173. Matusch A, Saft C, Elmenhorst D, et al. Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease. Eur J Nucl Med Mol Imaging. 2014;41:1210–20.

    Article  CAS  PubMed  Google Scholar 

  174. Ahmad R, Bourgeois S, Postnov A, et al. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology. 2014;82:279–81.

    Article  PubMed  Google Scholar 

  175. Russell D, Jennings D, Barret O, et al. Monitoring loss of striatal phosphodiesterase 10a (PDE10a) with [18F]MNI659 and PET: a biomarker of early Huntigton disease (HD) progression. Neurology. 2015;84:S15.004.

    Google Scholar 

  176. Herholz K, Weisenbach S, Zündorf G, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage. 2004;21:136–43.

    Article  CAS  PubMed  Google Scholar 

  177. Kendziorra K, Wolf H, Meyer PM, et al. Decreased cerebral a4ß2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging. 2011;38:515–25.

    Article  CAS  PubMed  Google Scholar 

  178. Mitsis EM, Reech KM, Bois F, et al. 123I-5-IA-85380 SPECT imaging of nicotinic receptors in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2009;50:1455–63.

    Article  CAS  PubMed  Google Scholar 

  179. Kadir A, Almkvist O, Wall A, Långström B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl). 2006;188:509–20.

    Article  CAS  Google Scholar 

  180. Sabri O, Becker GA, Meyer PM, et al. First-in-human PET quantification study of cerebral a4ß2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F]Flubatine. Neuroimage. 2015;118:199–208.

    Article  CAS  PubMed  Google Scholar 

  181. Blin J, Baron JC, Dubois B, et al. Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain. 1993;116:497–510.

    Article  PubMed  Google Scholar 

  182. Gulyás B, Pavlova E, Kása P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58:60–8.

    Article  PubMed  CAS  Google Scholar 

  183. McKeith I, O’Brien J, Walker Z, et al. DLB Study Group. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6:305–13.

    Google Scholar 

  184. Becker B, Klein EM, Striepens N, et al. Nicotinic acetylcholine receptors contribute to learning-induced metaplasticity in the hippocampus. J Cogn Neurosci. 2013;25:986–97.

    Article  PubMed  Google Scholar 

  185. Ettrup A, Mikkelsen JD, Lehel S, et al. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J Nucl Med. 2011;52:1449–56.

    Article  CAS  PubMed  Google Scholar 

  186. Howes OD, Kambeitz J, Kim E, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69:776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Abi-Dargham A, Gil R, Krystal J, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry. 1998;155:761–7.

    Article  CAS  PubMed  Google Scholar 

  188. Ceccarini J, De Hert M, Van Winkel R, et al. Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug free patients with schizophrenia. Neuroimage. 2013;79:304–12.

    Article  CAS  PubMed  Google Scholar 

  189. Berding G, Schneider U, Gielow P, et al. Feasibility of central cannabinoid CB1 receptor imaging with [124I]AM281 PET demonstrated in a schizophrenic patient. Psychiatry Res. 2006;147:249–56.

    Article  CAS  PubMed  Google Scholar 

  190. Praschak-Rieder N, Willeit M. Imaging of seasonal affective disorder and seasonality effects on serotonin and dopamine function in the human brain. Curr Top Behav Neurosci. 2012;11:149–67.

    Article  PubMed  Google Scholar 

  191. Kalbitzer J, Erritzoe D, Holst KK, et al. Seasonal changes in brain serotonin transporter binding in short serotonin transporter linked polymorphic region-allele carriers but not in long-allele homozygotes. Biol Psychiatry. 2010;67(11):1033–9.

    Article  CAS  PubMed  Google Scholar 

  192. Tomita T, Yasui-Furukori N, Nakagami T, et al. The influence of 5-HTTLPR genotype on the association between the plasma concentration and therapeutic effect of paroxetine in patients with major depressive disorder. PLoS One. 2014;9:e98099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Praschak-Rieder N, Willeit M, Wilson AA, Houle S, Meyer JH. Seasonal variation in human brain serotonin transporter binding. Arch Gen Psychiatry. 2008;65:1072–8.

    Article  PubMed  Google Scholar 

  194. Buchert R, Schulze O, Wilke F, et al. Is correction for age necessary in SPECT or PET of the central serotonin transporter in young, healthy adults? J Nucl Med. 2006;47:38–42.

    CAS  PubMed  Google Scholar 

  195. Spindelegger C, Stein P, Wadsak W, et al. Light-dependent alteration of serotonin-1A receptor binding in cortical and subcortical limbic regions in the human brain. World J Biol Psychiatry. 2012;13:413–22.

    Article  PubMed  Google Scholar 

  196. Eisenberg DP, Kohn PD, Baller EB, et al. Seasonal effects on human striatal presynaptic dopamine synthesis. J Neurosci. 2010;30:14691–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tsai HY, Chen KC, Yang YK, et al. Sunshine-exposure variation of human striatal dopamine D(2)/D(3) receptor availability in healthy volunteers. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:107–10.

    Article  CAS  PubMed  Google Scholar 

  198. Fujita M, Hines CS, Zoghbi SS, et al. Downregulation of brain phosphodiesterase type IV measured with 11C-(R)-rolipram positron emission tomography in major depressive disorder. Biol Psychiatry. 2012;72:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Frick A, Åhs F, Engman J, et al. Serotonin synthesis and reuptake in social anxiety disorder: a positron emission tomography study. JAMA Psychiatry. 2015;72:794–802.

    Article  PubMed  Google Scholar 

  200. Baeken C, Bossuyt A, De Raedt R. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance. Psychiatry Res. 2014;221:162–8.

    Article  PubMed  Google Scholar 

  201. Tohyama Y, Yamane F, Merid MF, Diksic M. Effects of selective 5-HT1A receptor antagonists on regional serotonin synthesis in the rat brain: an autoradiographic study with alpha-[14C]methyl-L-tryptophan. Eur Neuropsychopharmacol. 2001;11:193–202.

    Article  CAS  PubMed  Google Scholar 

  202. Hamon M, Lanfumey L, el Mestikawy S, et al. The main features of central 5-HT1 receptors. Neuropsychopharmacology. 1990;3:349–60.

    CAS  PubMed  Google Scholar 

  203. Hurlemann R, Schlaepfer TE, Matusch A, et al. Reduced 5-HT(2A) receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci. 2008;4:79–84.

    Article  PubMed  Google Scholar 

  204. Selvaraj S, Turkheimer F, Rosso L, et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry. 2012;17:1254–60.

    Article  CAS  PubMed  Google Scholar 

  205. Bosker FJ, Tanke MA, Jongsma ME, et al. Biochemical and behavioral effects of long-term citalopram administration and discontinuation in rats: role of serotonin synthesis. Neurochem Int. 2010;57:948–57.

    Article  CAS  PubMed  Google Scholar 

  206. Frick A, Ahs F, Linnman C, et al. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: a positron emission tomography study with [11C]GR205171. Transl Psychiatry. 2015;5:e597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol. 2003;63:1256–72.

    Article  CAS  PubMed  Google Scholar 

  208. Riad M, Zimmer L, Rbah L, et al. Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F] MPPF in the nucleus raphe dorsalis of rat. J Neurosci. 2004;24:5420–6.

    Article  CAS  PubMed  Google Scholar 

  209. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE. WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology (Berl). 2006;188:244–51.

    Article  CAS  Google Scholar 

  210. Paterson LMKB, Nutt DJ, Pike WW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. 2013;33:54–111.

    Article  CAS  PubMed  Google Scholar 

  211. Zilles K, Palomero-Gallagher N, Schleicher A. Transmitter receptors and functional anatomy of the cerebral cortex. J Anat. 2004;205:417–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fisher PM, Holst KK, Mc Mahon B, et al. 5-HTTLPR status predictive of neocortical 5-HT4 binding assessed with [11C]SB207145 PET in humans. Neuroimage. 2012;62:130–6.

    Article  CAS  PubMed  Google Scholar 

  213. Lehto J, Scheinin A, Johansson J, et al. Detecting dexmedetomidine-evoked reduction of noradrenaline release in the human brain with the alpha2C adrenoceptor PET ligand [11C]ORM-13070. Synapse. 2016;70:57–65.

    Article  CAS  PubMed  Google Scholar 

  214. Nahimi A, Jakobsen S, Munk OL, et al. Mapping α2 adrenoceptors of the human brain with 11C-yohimbine. J Nucl Med. 2015;56:392–8.

    Article  CAS  PubMed  Google Scholar 

  215. Yamamoto S, Ouchi Y, Nakatsuka D, et al. Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptor. PLoS One. 2012;7:e51515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xie G, Gunn RN, Dagher A, et al. PET quantification of muscarinic cholinergic receptors with [N-11C-methyl]benztropine and application to studies of propofol-induced unconsciousness in healthy human volunteers. Synapse. 2004;51:91–101.

    Article  CAS  PubMed  Google Scholar 

  217. Zilles K, Amunts K. Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol. 2009;22:331–9.

    Article  PubMed  Google Scholar 

  218. Podruchny TA, Connolly C, Bokde A, et al. In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse. 2003;48:39–44.

    Article  CAS  PubMed  Google Scholar 

  219. Ray R, Ruparel K, Newberg A, et al. Human Mu opioid receptor (OPMR1 A118G) polymorphism is associated with brain mu-opioid receptor bindingh potential in smokers. Proc Natl Acad Sci U S A. 2011;108:9268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sato H, Ito C, Hiraoka K, et al. Histamine H1 receptor occupancy by the new-generation antipsychotics olanzapine and quetiapine: a positron emission tomography study in healthy volunteers. Psychopharmacology (Berl). 2015;232:3497–505.

    Article  CAS  Google Scholar 

  221. Hiraoka K, Tashiro M, Grobosch T, et al. Brain histamine H1 receptor occupancy measured by PET after oral administration of levocetirizine, a non-sedating antihistamine. Expert Opin Drug Saf. 2015;14:199–206.

    Article  CAS  PubMed  Google Scholar 

  222. Ashworth S, Berges A, Rabiner EA, et al. Unexpectedly high affinity of a novel histamine H(3) receptor antagonist, GSK239512, in vivo in human brain, determined using PET. Br J Pharmacol. 2014;171:1241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Van Laere KJ, Sanabria-Bohórquez SM, Mozley DP, et al. (11)C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists. J Nucl Med. 2014;55:65–72.

    Article  PubMed  CAS  Google Scholar 

  224. Mølck C, Harpsøe K, Gloriam DE, et al. mGluR5: exploration of orthosteric and allosteric ligand binding pockets and their applications to drug discovery. Neurochem Res. 2014;39:1862–75.

    Article  PubMed  CAS  Google Scholar 

  225. Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134:979–86.

    Article  PubMed  Google Scholar 

  226. Dhawan V, Robeson W, Bjelke D, et al. Human Radiation Dosimetry for the N-Methyl-d-Aspartate Receptor Radioligand 11C-CNS5161. J Nucl Med. 2015;56:869–72.

    Article  CAS  PubMed  Google Scholar 

  227. McGinnity CJ, Hammers A, Riaño Barros DA, et al. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors. Nucl Med. 2014;55:423–30.

    Article  CAS  Google Scholar 

  228. Matsumoto R, Haradahira T, Ito H, et al. Measurement of glycine binding site of N-methyl-D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11C]ethoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse. 2007;61:795–800.

    Article  CAS  PubMed  Google Scholar 

  229. Brody AL, Mukhin AG, Mamoun MS, et al. Brain nicotinic acetylcholine receptor availability and response to smoking cessation treatment. A randomized trial. JAMA Psychiatry. 2014;71:797–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Wong DF, Kuwabara H, Kim J, et al. PET imaging of high-affinity α4β2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med. 2013;54:1308–14.

    Article  CAS  PubMed  Google Scholar 

  231. Wong DF, Kuwabara H, Pomper M, et al. Human brain imaging of α7 nAChR with [18F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol Imaging Biol. 2014;16:730–8.

    Article  PubMed  Google Scholar 

  232. Fowler JS, Logan J, Shumay E, et al. Monoamine oxidase: radiotracer chemistry and human studies. J Labelled Comp Radiopharm. 2015;58:51–64.

    Article  CAS  PubMed  Google Scholar 

  233. Bretin F, BahriMA BC, et al. Biodistribution and radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H: first in human study. Mol Imaging Biol. 2015;17:557–64.

    Article  CAS  PubMed  Google Scholar 

  234. Huang Y, Hwang DR, Narendran R, et al. Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [11C]McN 5652, [11C]ADAM,[11C]DASB, [11C]DAPA, and [11C]AFM. J Cereb Blood Flow Metab. 2002;22:1377–98.

    Article  CAS  PubMed  Google Scholar 

  235. Lundquist P, Blomquist G, Hartvig P, et al. Validation studies on the 5-hydroxy-L-[beta-11C]-tryptophan/PET method for probing the decarboxylase step in serotonin synthesis. Synapse. 2006;59:521–31.

    Article  CAS  PubMed  Google Scholar 

  236. Li CS, Potenza MN, Lee DE, et al. Decreased norepinephrine transporter availability in obesity: Positron Emission Tomography imaging with (S, S)-[11C]O-methylreboxetine. Neuroimage. 2013;86:306–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Joshi AD, Sanabria-Bohorquez S, Bormans G, et al. Characterization of the novel GlyT1 PET tracer [18F]MK6577 in humans. Synapse. 2015;69:33–40.

    Article  CAS  PubMed  Google Scholar 

  238. Wong DF, Ostrowitzki S, Zhou Y, et al. Characterization of [11C]RO5013853, a novel PET tracer for the glycine transporter type 1 (GlyT1) in humans. Neuroimage. 2013;75:282–90.

    Article  CAS  PubMed  Google Scholar 

  239. Huang CY, Liu CH, Tsao E, et al. Chronic manganism: a long-term follow-up study with a new dopamine terminal biomarker of 18F-FP-(+)-DTBZ (18F-AV-133) brain PET scan. J Neurol Sci. 2015;353:102–6.

    Article  CAS  PubMed  Google Scholar 

  240. Khayum MA, Doorduin J, Glaudemans AWJM, Dierckx RAJO, de Vries EFJ. PET and SPECT imaging of steroid hormone receptors. In: Dierckx R, Otte A, de Vries E, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Heidelberg: Springer; 2014.

    Google Scholar 

Download references

Acknowledgment

Andreas Bauer is thankfully acknowledged for inspiring, encouraging, and continuously generously supporting this work. Figures 20.2, 20.3, and 20.5 were derived from studies we conducted in the frame of his research group with his support. There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matusch MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matusch, A., Kroll, T. (2017). PET in Neurological and Psychiatric Disorders: Technologic Advances and Clinical Applications. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics