Skip to main content
Log in

Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We constructed a BAC contig of about 300 kb spanning the Rdr1 locus for black spot resistance in Rosa multiflora hybrids, using a new BIBAC library from DNA of this species. From this contig, we developed broadly applicable simple sequence repeat (SSR) markers tightly linked to Rdr1, which are suitable for genetic analyses and marker-assisted selection in roses. As a source for the high molecular weight DNA, we chose the homozygous resistant R. multiflora hybrid 88/124-46. For the assembly of the BAC contig, we made use of molecular markers derived from a previously established R. rugosa contig. In order to increase the resolution for fine mapping, the size of the population was increased to 974 plants. The genomic region spanning Rdr1 is now genetically restricted to 0.2 cM, corresponding to a physical distance of about 300 kb. One single-stranded conformational polymorphism (SSCP) and one SSR marker cosegregate with the Rdr1-mediated black spot resistance, while one SSR and several cleaved amplified polymorphic sequence or SSCP markers are very tightly linked with one to three recombinants among the 974 plants. The benefits of the molecular markers developed from the R. multiflora contig for the genetic analysis of roses and the integration of rose genetic maps are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Ballvora A, Jöcker A, Viehöver P, Ishihara H, Paal J, Meksem K, Bruggmann R, Schoof H, Weisshaar B, Gebhardt C (2007) Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics 8:112–125

    Article  PubMed  Google Scholar 

  • Cai L, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK (1995) Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29:413–425

    Article  CAS  PubMed  Google Scholar 

  • Crespel L, Chirollet M, Durel CE, Zhang D, Meynet J, Gudin S (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Debener T, Drewes-Alvarez R, Rockstroh K (1998) Identification of five physiological races of black spot, Diplocarpon rosae, Wolf on roses. Plant Breed 117:267–270

    Article  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086

    Article  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520

    Article  CAS  PubMed  Google Scholar 

  • Ercolano MR, Ballvora A, Paal J, Steinbiss HH, Salamini F, Gebhardt C (2004) Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol Breed 13:15–22

    Article  CAS  Google Scholar 

  • Hess G, Scheuring D, Byrne DH, Zhang D (2007) Towards positional cloning of the everblooming gene in plants: a BAC library of Rosa chinensis cv. Old Blush. Acta Hort 751:169–174

    CAS  Google Scholar 

  • Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23

    Article  Google Scholar 

  • Horst RK (2007) Compendium of rose diseases, 2nd edn. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285–297

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann H, Mattiesch L, Lörz H, Debener T (2003) Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Mol Gen Genomics 268:666–674

    CAS  Google Scholar 

  • Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Marek LF, Shoemaker RC (1997) BAC contig development and fingerprint analysis in soybean. Genome 40:420–427

    Article  CAS  PubMed  Google Scholar 

  • Matallana E, Bell CJ, Dunn PJ, Lu M, Ecker JR (1992) Genetic and physical linkage of the Arabidopsis genome: methods for anchoring yeast artificial chromosomes. In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore, pp 145–169

    Google Scholar 

  • Orita M, Suziki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse S, Byrne DH, Zhang L, Anderson N, Arumuganathan K, Ballard RE (2001) Two genetic linkage maps of tetraploid roses. Theor Appl Genet 103:575–583

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package—JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Tao Q, Zhang HB (1998) Cloning and stable maintenance of DNA fragments over 300 kB in Escherichia coli with conventional plasmid-based vectors. Nucl Acids Res 26:4901–4909

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Von Malek B, Debener T (1998) Genetic analysis of resistance to black spot (Diplocarpon rosae) in tetraploid roses. Theor Appl Genet 96:228–231

    Article  Google Scholar 

  • Von Malek B, Weber WE, Debener T (2000) Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in roses. Theor Appl Genet 101:977–983

    Article  Google Scholar 

  • Whitaker VM, Bradeen JM, Debener T, Biber A, Hokanson SC (2009) Rdr3, a novel locus conferring black spot disease resistance in tetraploid rose: genetic analysis, LRR profiling and SCAR marker development. Theor Appl Genet. doi:10.1007/s00122-009-1177-0

  • Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-elF4E locus: recombination, rearrangements and repeats. Plant J 41:184–194

    Article  CAS  PubMed  Google Scholar 

  • Wissemann V (2003) Conventional taxonomy of wild roses. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose sciences. Academic Press, London, pp 111–117

    Google Scholar 

  • Woo SS, Jiang J, Gell B, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucl Acids Res 22:4922–4931

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article  CAS  PubMed  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in roses. Ann Bot 85:557–561

    Article  CAS  Google Scholar 

  • Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hort Sci 131:380–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Debener.

Additional information

Communicated by H. Nybom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biber, A., Kaufmann, H., Linde, M. et al. Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. Theor Appl Genet 120, 765–773 (2010). https://doi.org/10.1007/s00122-009-1197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1197-9

Keywords

Navigation