Skip to main content

Neuropilin 1 and Neuropilin 2: Cancer Progression and Biomarker Analysis

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

Neuropilins (NRP, human; Nrp, mouse) are a family of cell surface protein receptors originally named for their role in neuronal guidance during embryonic development. Over the past two decades, the expression, localization, regulation, and function of the NRP family have been intensely studied. The two-member family composed of neuropilin 1 (NRP1) and neuropilin 2 (NRP2) has now been shown to drive diverse processes including neuronal guidance, vasculogenesis, lymphangiogenesis, immunity, smooth muscle tone, epithelial cell migration and branching, epithelial-to-mesenchymal transition, and cancer progression. Although the two receptors share high sequence homology and domain structure, their unique ligand specificity, co-receptor nature, and disparate cell-specific expression patterns mediate pleiotropic functions in multiple tissue systems. Their abundant expression in a myriad of cancers and their location on the cell surface make them prime targets for antitumor therapies and potential use as surrogate biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Satoda M, et al. Differential expression of two cell surface proteins, neuropilin and plexin, in Xenopus olfactory axon subclasses. J Neurosci. 1995;15(1 Pt 2):942–55.

    CAS  PubMed  Google Scholar 

  2. Neufeld G, et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med. 2002;12(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bismuth G, Boumsell L. Controlling the immune system through semaphorins. Sci STKE. 2002;2002(128):RE4.

    Article  PubMed  Google Scholar 

  4. Bielenberg DR, et al. Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res. 2006;312(5):584–93.

    Article  CAS  PubMed  Google Scholar 

  5. Wild JR, et al. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol. 2012;93(2):81–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis-A closer look at the neuropilin/semaphorin3 axis. Microvasc Res. 2014;96C:68–76.

    Article  CAS  Google Scholar 

  7. Rossignol M, et al. Human neuropilin-1 and neuropilin-2 map to 10p12 and 2q34, respectively. Genomics. 1999;57(3):459–60.

    Article  CAS  PubMed  Google Scholar 

  8. Rossignol M, Gagnon ML, Klagsbrun M. Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics. 2000;70(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  9. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002;515:33–48.

    Article  CAS  PubMed  Google Scholar 

  10. Pellet-Many C, et al. Neuropilins: structure, function and role in disease. Biochem J. 2008;411(2):211–26.

    Article  CAS  PubMed  Google Scholar 

  11. Roth L, et al. Transmembrane domain interactions control biological functions of neuropilin-1. Mol Biol Cell. 2008;19(2):646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barton R, et al. Cysteines in the neuropilin-2 MAM domain modulate receptor homooligomerization and signal transduction. Biopolymers. 2015;104(4):371–8.

    Article  CAS  PubMed  Google Scholar 

  13. Appleton BA, et al. Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J. 2007;26(23):4902–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geretti E, et al. Site-directed mutagenesis in the B-neuropilin-2 domain selectively enhances its affinity to VEGF165, but not to semaphorin 3F. J Biol Chem. 2007;282(35):25698–707.

    Article  CAS  PubMed  Google Scholar 

  15. Gu C, et al. Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem. 2002;277(20):18069–76.

    Article  CAS  PubMed  Google Scholar 

  16. Mamluk R, et al. Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J Biol Chem. 2002;277(27):24818–25.

    Article  CAS  PubMed  Google Scholar 

  17. Karpanen T, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 2006;20(9):1462–72.

    Article  CAS  PubMed  Google Scholar 

  18. Sulpice E, et al. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood. 2008;111(4):2036–45.

    Article  CAS  PubMed  Google Scholar 

  19. Glinka Y, Prud'homme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol. 2008;84(1):302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao Q, Spring SC, Terman BI. Characterization of a new alternatively spliced neuropilin-1 isoform. Angiogenesis. 2003;6(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, et al. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron. 1997;19(3):547–59.

    Article  CAS  PubMed  Google Scholar 

  22. Cai H, Reed RR. Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci. 1999;19(15):6519–27.

    CAS  PubMed  Google Scholar 

  23. Wang L, Mukhopadhyay D, Xu X. C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis. FASEB J. 2006;20(9):1513–5.

    Article  CAS  PubMed  Google Scholar 

  24. Prahst C, et al. Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. J Biol Chem. 2008;283(37):25110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gagnon ML, et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc Natl Acad Sci U S A. 2000;97(6):2573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cackowski FC, et al. Identification of two novel alternatively spliced Neuropilin-1 isoforms. Genomics. 2004;84(1):82–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panigrahy D, Adini I, Mamluk R, Levonyak N, Bruns CJ, D'Amore P, Klagsbrun M, Bielenberg DR. Regulation of soluble Neuropilin 1, an endogenous angiogenesis inhibitor, in liver development and regeneration. Pathology. 2014;46:416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berge M, et al. Neuropilin-1 is upregulated in hepatocellular carcinoma and contributes to tumour growth and vascular remodelling. J Hepatol. 2011;55(4):866–75.

    Article  CAS  PubMed  Google Scholar 

  29. Mamluk R, et al. Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis. 2005;8(3):217–27.

    Article  CAS  PubMed  Google Scholar 

  30. Parker MW, et al. Structural basis for VEGF-C binding to neuropilin-2 and sequestration by a soluble splice form. Structure. 2015;23(4):677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geretti E, et al. A mutated soluble neuropilin-2 B domain antagonizes vascular endothelial growth factor bioactivity and inhibits tumor progression. Mol Cancer Res. 2010;8(8):1063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong TM, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res. 2007;13(16):4759–68.

    Article  CAS  PubMed  Google Scholar 

  33. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell. 1997;90(4):739–51.

    Article  CAS  PubMed  Google Scholar 

  34. Kolodkin AL, et al. Neuropilin is a semaphorin III receptor. Cell. 1997;90(4):753–62.

    Article  CAS  PubMed  Google Scholar 

  35. Soker S, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92(6):735–45.

    Article  CAS  PubMed  Google Scholar 

  36. Klagsbrun M, Eichmann A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 2005;16(4–5):535–48.

    Article  CAS  PubMed  Google Scholar 

  37. Guo HF, Vander Kooi CW. Neuropilin functions as an essential cell surface receptor. J Biol Chem. 2015;290(49):29120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raimondi C, Ruhrberg C. Neuropilin signalling in vessels, neurons and tumours. Semin Cell Dev Biol. 2013;24(3):172–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zachary IC. How neuropilin-1 regulates receptor tyrosine kinase signalling: the knowns and known unknowns. Biochem Soc Trans. 2011;39(6):1583–91.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  CAS  PubMed  Google Scholar 

  41. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.

    Article  CAS  PubMed  Google Scholar 

  42. Soker S, et al. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem. 1996;271(10):5761–7.

    Article  CAS  PubMed  Google Scholar 

  43. Shraga-Heled N, et al. Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. FASEB J. 2007;21(3):915–26.

    Article  CAS  PubMed  Google Scholar 

  44. Nowak DG, et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 2008;121(Pt 20):3487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soker S, et al. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem. 2002;85(2):357–68.

    Article  CAS  PubMed  Google Scholar 

  46. Lee CC, et al. Crystal structure of the human neuropilin-1 b1 domain. Structure. 2003;11(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  47. Vander Kooi CW, et al. Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci U S A. 2007;104(15):6152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cebe Suarez S, et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci. 2006;63(17):2067–77.

    Article  CAS  PubMed  Google Scholar 

  49. Parker MW, et al. Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem. 2012;287(14):11082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shibuya M, Ito N, Claesson-Welsh L. Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol. 1999;237:59–83.

    CAS  PubMed  Google Scholar 

  51. Gluzman-Poltorak Z, et al. Vascular endothelial growth factor receptor-1 and neuropilin-2 form complexes. J Biol Chem. 2001;276(22):18688–94.

    Article  CAS  PubMed  Google Scholar 

  52. Migdal M, et al. Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem. 1998;273(35):22272–8.

    Article  CAS  PubMed  Google Scholar 

  53. Makinen T, et al. Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem. 1999;274(30):21217–22.

    Article  CAS  PubMed  Google Scholar 

  54. Yang X, et al. Vascular endothelial growth factor-dependent spatiotemporal dual roles of placental growth factor in modulation of angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 2013;110(34):13932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Favier B, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood. 2006;108(4):1243–50.

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 2010;188(1):115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murray-Rust J, et al. Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure. 1993;1(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ball SG, et al. Neuropilin-1 regulates platelet-derived growth factor receptor signalling in mesenchymal stem cells. Biochem J. 2010;427(1):29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pellet-Many C, et al. Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J. 2011;435(3):609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glinka Y, et al. Neuropilin-1 exerts co-receptor function for TGF-beta-1 on the membrane of cancer cells and enhances responses to both latent and active TGF-beta. Carcinogenesis. 2011;32(4):613–21.

    Article  CAS  PubMed  Google Scholar 

  61. Wittmann P, et al. Neuropilin-2 induced by transforming growth factor-beta augments migration of hepatocellular carcinoma cells. BMC Cancer. 2015;15:909.

    Article  PubMed  PubMed Central  Google Scholar 

  62. West DC, et al. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem. 2005;280(14):13457–64.

    Article  CAS  PubMed  Google Scholar 

  63. Mizuno K, Nakamura T. Molecular characteristics of HGF and the gene, and its biochemical aspects. EXS. 1993;65:1–29.

    CAS  PubMed  Google Scholar 

  64. Zhou H, et al. The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site. Structure. 1998;6(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  65. Matsumoto K, Nakamura T. Hepatocyte growth factor: molecular structure and implications for a central role in liver regeneration. J Gastroenterol Hepatol. 1991;6(5):509–19.

    Article  CAS  PubMed  Google Scholar 

  66. Kajiya K, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 2005;24(16):2885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silvagno F, et al. In vivo activation of met tyrosine kinase by heterodimeric hepatocyte growth factor molecule promotes angiogenesis. Arterioscler Thromb Vasc Biol. 1995;15(11):1857–65.

    Article  CAS  PubMed  Google Scholar 

  68. Capparuccia L, Tamagnone L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment--two sides of a coin. J Cell Sci. 2009;122(Pt 11):1723–36.

    Article  CAS  PubMed  Google Scholar 

  69. Eickholt BJ. Functional diversity and mechanisms of action of the semaphorins. Development. 2008;135(16):2689–94.

    Article  CAS  PubMed  Google Scholar 

  70. Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell. 1993;75(7):1389–99.

    Article  CAS  PubMed  Google Scholar 

  71. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993;75(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  72. Klagsbrun M, Shimizu A. Semaphorin 3E, an exception to the rule. J Clin Invest. 2010;120(8):2658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Casazza A, et al. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest. 2010;120(8):2684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taniguchi M, et al. Identification and characterization of a novel member of murine semaphorin family. Genes Cells. 2005;10(8):785–92.

    Article  CAS  PubMed  Google Scholar 

  75. Gaur P, et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009;15(22):6763–70.

    Article  CAS  PubMed  Google Scholar 

  76. Chedotal A, et al. Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development. 1998;125(21):4313–23.

    CAS  PubMed  Google Scholar 

  77. Adams RH, et al. The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J. 1997;16(20):6077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koppel AM, Raper JA. Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J Biol Chem. 1998;273(25):15708–13.

    Article  CAS  PubMed  Google Scholar 

  79. Kutschera S, et al. Differential endothelial transcriptomics identifies semaphorin 3G as a vascular class 3 semaphorin. Arterioscler Thromb Vasc Biol. 2011;31(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  80. Varshavsky A, et al. Semaphorin-3B is an angiogenesis inhibitor that is inactivated by furin-like pro-protein convertases. Cancer Res. 2008;68(17):6922–31.

    Article  CAS  PubMed  Google Scholar 

  81. Mumblat Y, et al. Full-Length Semaphorin-3C Is an Inhibitor of Tumor Lymphangiogenesis and Metastasis. Cancer Res. 2015;75(11):2177–86.

    Article  CAS  PubMed  Google Scholar 

  82. Bassi DE, et al. Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol Carcinog. 2005;44(3):151–61.

    Article  CAS  PubMed  Google Scholar 

  83. Christensen CR, et al. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res. 1998;58(6):1238–44.

    CAS  PubMed  Google Scholar 

  84. Christensen C, et al. Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Res. 2005;65(14):6167–77.

    Article  CAS  PubMed  Google Scholar 

  85. Chen H, et al. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron. 1998;21(6):1283–90.

    Article  CAS  PubMed  Google Scholar 

  86. Miao HQ, et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol. 1999;146(1):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parker MW, et al. Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry. 2010;49(19):4068–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo HF, et al. Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry. 2013;52(43):7551–8.

    Article  CAS  PubMed  Google Scholar 

  89. Pascoe HG, Wang Y, Zhang X. Structural mechanisms of plexin signaling. Prog Biophys Mol Biol. 2015;118(3):161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene. 2014;33(40):4795–802.

    Article  CAS  PubMed  Google Scholar 

  91. Wu KY, et al. Local translation of RhoA regulates growth cone collapse. Nature. 2005;436(7053):1020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shimizu A, et al. ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells. J Biol Chem. 2008;283(40):27230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wedel J, et al. Chronic allograft rejection: a fresh look. Curr Opin Organ Transplant. 2015;20(1):13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lumb R, et al. Neuropilins define distinct populations of neural crest cells. Neural Dev. 2014;9:24.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rushing EC, et al. Neuropilin-2: a novel biomarker for malignant melanoma? Hum Pathol. 2012;43(3):381–9.

    Article  CAS  PubMed  Google Scholar 

  96. Moyon D, et al. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development. 2001;128(17):3359–70.

    CAS  PubMed  Google Scholar 

  97. Herzog Y, et al. Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev. 2001;109(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  98. Yuan L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797–806.

    CAS  PubMed  Google Scholar 

  99. Kitsukawa T, et al. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121(12):4309–18.

    CAS  PubMed  Google Scholar 

  100. Kitsukawa T, et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997;19(5):995–1005.

    Article  CAS  PubMed  Google Scholar 

  101. Kawasaki T, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999;126(21):4895–902.

    CAS  PubMed  Google Scholar 

  102. Takashima S, et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A. 2002;99(6):3657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fantin A, et al. The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development. 2011;138(19):4185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. le Noble F, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004;131(2):361–75.

    Article  PubMed  CAS  Google Scholar 

  105. Braet F, et al. Liver sinusoidal endothelial cell modulation upon resection and shear stress in vitro. Comp Hepatol. 2004;3(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bielenberg DR, et al. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest. 2004;114(9):1260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pan Q, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell. 2007;11(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  108. Caunt M, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008;13(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  109. Mucka P, et al. Inflammation and lymphedema are exacerbated and prolonged by neuropilin 2 deficiency. Am J Pathol. 2016;186(11):2803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bielenberg DR, et al. Increased smooth muscle contractility in mice deficient for neuropilin 2. Am J Pathol. 2012;181(2):548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shahrabi-Farahani S, et al. Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas. Lab Investig. 2014;94(7):752–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kurschat P, et al. Neuron restrictive silencer factor NRSF/REST is a transcriptional repressor of neuropilin-1 and diminishes the ability of semaphorin 3A to inhibit keratinocyte migration. J Biol Chem. 2006;281(5):2721–9.

    Article  CAS  PubMed  Google Scholar 

  113. Morris JS, et al. Involvement of axonal guidance proteins and their signaling partners in the developing mouse mammary gland. J Cell Physiol. 2006;206(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  114. Harper SJ, et al. Expression of neuropilin-1 by human glomerular epithelial cells in vitro and in vivo. Clin Sci (Lond). 2001;101(4):439–46.

    Article  CAS  Google Scholar 

  115. Wang HB, et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun. 2015;6:6240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aung NY, et al. Specific Neuropilins Expression in Alveolar Macrophages among Tissue-Specific Macrophages. PLoS One. 2016;11(2):e0147358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Curreli S, et al. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: role in cell migration. J Leukoc Biol. 2016;100(6):1323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chaudhary B, Elkord E. Novel expression of Neuropilin 1 on human tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Expert Opin Ther Targets. 2015;19(2):147–61.

    Article  CAS  PubMed  Google Scholar 

  119. Hansen W, et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med. 2012;209(11):2001–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Beck B, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478(7369):399–403.

    Article  CAS  PubMed  Google Scholar 

  121. Shahrabi-Farahani S, et al. Neuropilin 1 receptor is up-regulated in dysplastic epithelium and oral squamous cell carcinoma. Am J Pathol. 2016;186(4):1055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bachelder RE, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res. 2001;61(15):5736–40.

    CAS  PubMed  Google Scholar 

  123. Parikh AA, et al. Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol. 2004;164(6):2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Akagi M, et al. Induction of neuropilin-1 and vascular endothelial growth factor by epidermal growth factor in human gastric cancer cells. Br J Cancer. 2003;88(5):796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Okon IS, et al. Aberrant NRP-1 expression serves as predicator of metastatic endometrial and lung cancers. Oncotarget. 2016;7(7):7970–8.

    Article  PubMed  Google Scholar 

  126. Baba T, et al. Neuropilin-1 promotes unlimited growth of ovarian cancer by evading contact inhibition. Gynecol Oncol. 2007;105(3):703–11.

    Article  CAS  PubMed  Google Scholar 

  127. Osada R, et al. Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Hum Pathol. 2006;37(11):1414–25.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang H, et al. Increased expression of neuropilin 1 is associated with epithelial ovarian carcinoma. Mol Med Rep. 2015;12(2):2114–20.

    Article  CAS  PubMed  Google Scholar 

  129. Latil A, et al. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer. 2000;89(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  130. Migliozzi M, Hida Y, Seth M, Brown G, Kwan J, Coma S, Panigrahy D, Adam RM, Banyard J, Shimizu A, Bielenberg DR. VEGF/VEGFR2 autocrine signaling stimulates metastasis in prostate cancer cells. Current Angiogenesis. 2014;3(4):231–44.

    Article  CAS  Google Scholar 

  131. Hansel DE, et al. Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. Am J Surg Pathol. 2004;28(3):347–56.

    Article  PubMed  Google Scholar 

  132. Ben Q, et al. High neuropilin 1 expression was associated with angiogenesis and poor overall survival in resected pancreatic ductal adenocarcinoma. Pancreas. 2014;43(5):744–9.

    Article  CAS  PubMed  Google Scholar 

  133. Cao Y, et al. Neuropilin-1 upholds dedifferentiation and propagation phenotypes of renal cell carcinoma cells by activating Akt and sonic hedgehog axes. Cancer Res. 2008;68(21):8667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Roche J, Drabkin H, Brambilla E. Neuropilin and its ligands in normal lung and cancer. Adv Exp Med Biol. 2002;515:103–14.

    Article  CAS  PubMed  Google Scholar 

  135. Yang S, et al. Circulating soluble neuropilin-1 in patients with early cervical cancer and cervical intraepithelial neoplasia can be used as a valuable diagnostic biomarker. Dis Markers. 2015;2015:506428.

    PubMed  PubMed Central  Google Scholar 

  136. Kawakami T, et al. Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer. 2002;95(10):2196–201.

    Article  CAS  PubMed  Google Scholar 

  137. Sanchez-Carbayo M, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol. 2003;163(2):505–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dallas NA, et al. Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res. 2008;14(24):8052–60.

    Article  CAS  PubMed  Google Scholar 

  139. Fakhari M, et al. Selective upregulation of vascular endothelial growth factor receptors neuropilin-1 and -2 in human neuroblastoma. Cancer. 2002;94(1):258–63.

    Article  CAS  PubMed  Google Scholar 

  140. Hayden Gephart MG, et al. Neuropilin-2 contributes to tumorigenicity in a mouse model of Hedgehog pathway medulloblastoma. J Neuro-Oncol. 2013;115(2):161–8.

    Article  CAS  Google Scholar 

  141. Handa A, et al. Neuropilin-2 expression affects the increased vascularization and is a prognostic factor in osteosarcoma. Int J Oncol. 2000;17(2):291–5.

    CAS  PubMed  Google Scholar 

  142. Guttmann-Raviv N, et al. The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett. 2006;231(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  143. Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther. 2006;5(5):1099–107.

    Article  CAS  PubMed  Google Scholar 

  144. Bielenberg DR, Klagsbrun M. Targeting endothelial and tumor cells with semaphorins. Cancer Metastasis Rev. 2007;26(3–4):421–31.

    Article  CAS  PubMed  Google Scholar 

  145. Bagri A, Tessier-Lavigne M, Watts RJ. Neuropilins in tumor biology. Clin Cancer Res. 2009;15(6):1860–4.

    Article  CAS  PubMed  Google Scholar 

  146. Grandclement C, Borg C. Neuropilins: a new target for cancer therapy. Cancers (Basel). 2011;3(2):1899–928.

    Article  CAS  Google Scholar 

  147. Prud'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget. 2012;3(9):921–39.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Miao HQ, et al. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J. 2000;14(15):2532–9.

    Article  CAS  PubMed  Google Scholar 

  149. Kigel B, et al. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS One. 2008;3(9):e3287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Ji T, et al. Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma. Mol Cancer. 2015;14:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Barr MP, et al. Vascular endothelial growth factor is an autocrine growth factor, signaling through neuropilin-1 in non-small cell lung cancer. Mol Cancer. 2015;14:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yoshida A, et al. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells. Biol Open. 2015;4(9):1063. -76

    Article  PubMed  PubMed Central  Google Scholar 

  154. Grun D, Adhikary G, Eckert RL. VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors. Oncogene. 2016;35(33):4379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Snuderl M, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152(5):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hu B, et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene. 2007;26(38):5577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Matsushita A, Gotze T, Korc M. Hepatocyte growth factor-mediated cell invasion in pancreatic cancer cells is dependent on neuropilin-1. Cancer Res. 2007;67(21):10309–16.

    Article  CAS  PubMed  Google Scholar 

  158. Li L, et al. Neuropilin-1 is associated with clinicopathology of gastric cancer and contributes to cell proliferation and migration as multifunctional co-receptors. J Exp Clin Cancer Res. 2016;35:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Merkulova-Rainon T, et al. The N-terminal domain of hepatocyte growth factor inhibits the angiogenic behavior of endothelial cells independently from binding to the c-met receptor. J Biol Chem. 2003;278(39):37400–8.

    Article  CAS  PubMed  Google Scholar 

  160. Ding M, et al. Expression of VEGFR2 and NRP-1 in non-small cell lung cancer and their clinical significance. Chin J Cancer Res. 2014;26(6):669–77.

    PubMed  PubMed Central  Google Scholar 

  161. Zhao J, et al. Investigation of a novel biomarker, neuropilin-1, and its application for poor prognosis in acute myeloid leukemia patients. Tumour Biol. 2014;35(7):6919–24.

    Article  CAS  PubMed  Google Scholar 

  162. Zhao P, et al. Label-free quantitative proteomic analysis of benzo(a)pyrene-transformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera. Chem Biol Interact. 2016;245:39–49.

    Article  CAS  PubMed  Google Scholar 

  163. Moriarty WF, et al. Neuropilin-2 promotes melanoma growth and progression in vivo. Melanoma Res. 2016;26(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  164. Geretti E, Klagsbrun M. Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adhes Migr. 2007;1(2):56–61.

    Article  Google Scholar 

  165. Geretti E, Shimizu A, Klagsbrun M. Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis. 2008;11(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  166. Chaudhary B, et al. Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother. 2014;63(2):81–99.

    Article  CAS  PubMed  Google Scholar 

  167. Patnaik A, et al. A Phase Ib study evaluating MNRP1685A, a fully human anti-NRP1 monoclonal antibody, in combination with bevacizumab and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(5):951–60.

    Article  CAS  PubMed  Google Scholar 

  168. Maru D, Venook AP, Ellis LM. Predictive biomarkers for bevacizumab: are we there yet? Clin Cancer Res. 2013;19(11):2824–7.

    Article  CAS  PubMed  Google Scholar 

  169. Benson AB 3rd, et al. BATON-CRC: a phase II randomized trial comparing tivozanib plus mFOLFOX6 with bevacizumab plus mFOLFOX6 in stage IV metastatic colorectal cancer. Clin Cancer Res. 2016;22(20):5058–67.

    Article  CAS  PubMed  Google Scholar 

  170. Jubb AM, et al. Impact of exploratory biomarkers on the treatment effect of bevacizumab in metastatic breast cancer. Clin Cancer Res. 2011;17(2):372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Van Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol. 2012;30(17):2119–27.

    Article  PubMed  CAS  Google Scholar 

  172. Cetin B, et al. The impact of immunohistochemical staining with ezrin-carbonic anhydrase IX and neuropilin-2 on prognosis in patients with metastatic renal cell cancer receiving tyrosine kinase inhibitors. Tumour Biol. 2015;36(11):8471–8.

    Article  CAS  PubMed  Google Scholar 

  173. Uronis HE, et al. A phase II study of capecitabine, oxaliplatin, and bevacizumab in the treatment of metastatic esophagogastric adenocarcinomas. Oncologist. 2013;18(3):271–2.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Baumgarten P, et al. Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, −2, and −3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas. Neuro-Oncology. 2016;18(2):173–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane R. Bielenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, X., Bielenberg, D.R. (2017). Neuropilin 1 and Neuropilin 2: Cancer Progression and Biomarker Analysis. In: Akslen, L., Watnick, R. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-319-39147-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39147-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39145-8

  • Online ISBN: 978-3-319-39147-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics